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Abstract

In this paper we describe our TRECVID 2009 video re-
trieval experiments. The MediaMil l team participated in
three tasks: concept detection, automatic search, and in-
teractive search. The starting point for the MediaMil l con-
cept detection approach is our top-performing bag-of-words
system of last year, which usesmultiple color descriptors,
codebooks with soft-assignment,and kernel-based supervised
learning. We improve upon this baseline systemby explor-
ing two novel research directions. Firstly, we study a multi-
modal extension by including 20 audio concepts and fusion
using two novel multi-kernel supervised learning methods.
Secondly, with the help of recently proposed algorithmic re-
�nements of bag-of-word representations,a GPU implemen-
tation, and compute clusters, we scale-up the amount of vi-
sual information analyzed by an order of magnitude, to a
total of 1,000,000 i-fr ames. Our experiments evaluate the
merit of thesenew components, ultimately leading to 64 ro-
bust concept detectors for video retrieval. For retrieval, a
robust but limited set of concept detectors justi�es the need
to rely on as many auxiliary information channelsas pos-
sible. For automatic search we therefore explore how we
can learn to rank various information channelssimultane-
ously to maximize video search results for a given topic. To
further improve the video retrieval results, our interactive
search experiments investigate the roles of visualizing pre-
view results for a certain browse-dimensionand relevance
feedback mechanismsthat learn to solvecomplexsearch top-
ics by analysis from user browsing behavior. The 2009 edi-
tion of the TRECVID benchmark has again been a fruitful
participation for the MediaMil l team, resulting in the top
ranking for both concept detection and interactive search.
Again a lot has been learned during this year's TRECVID
campaign; we highlight the most important lessonsat the
end of this paper.

1 Intro duction

Robust video retrieval is highly relevant in a world that is
adapting swiftly to visual communication. Online services

like YouTube and Vimeo show that video is no longer the
domain of broadcast television only. Video has becomethe
medium of choice for many people communicating via the
Internet. Most commercial video search enginesprovide ac-
cessto video basedon text, as this is still the easiestway
for a user to describe an information need. The indices of
thesesearch enginesare basedon the �lename, surrounding
text, social tagging, closedcaptions, or a speech transcript.
This results in disappointing retrieval performance when
the visual content is not mentioned, or properly re
ected in
the associated text. In addition, when the videos originate
from non-English speaking countries, such as China, or the
Netherlands, querying the content becomesmuch harder as
robust automatic speech recognition results and their accu-
rate machine translations are di�cult to achieve.

To cater for robust video retrieval, the promising solutions
from literature are mostly concept-based[34], where detec-
tors are related to objects, like an airplane 
ying , scenes,
likea classroom, and people,like femalehuman face closeup.
Any one of those brings an understanding of the current
content. The elements in such a lexicon of concept detec-
tors o�er usersa semantic entry to video by allowing them
to query on presenceor absenceof visual content elements.
Last year we presented the MediaMil l 2008 semantic video
search engine[32], which aimed for more robustnessof con-
cept detectorsin the lexicon rather than extending the num-
ber of detectors. Our TRECVID 2009experiments continue
this emphasison robustnessfor a relatively small set of con-
cept detectors. A robust but limited setof conceptdetectors
justi�es the needto rely on asmany multimedia information
channels as possible for retrieval. To that end, we explore
how we can learn to rank various information channels si-
multaneously to maximize video search results for a given
topic. To improve the retrieval results further, we extend
our interactive browsers by supplementing them with vi-
sualizations for swift inspection, and a relevance feedback
mechanism basedon passive sampling of user browsing be-
havior. Taken together, the MediaMil l 2009 semantic video
search engineprovides userswith robust semantic accessto
video archives.

The remainder of the paper is organized as follows. We



Figure 2: MediaMill TRECVID 2009 concept detection scheme,using the conventionsof Figure 1. The schemeservesas the blueprint
for the organization of Section 2.

Figure 1: Data 
o w conventionsas used in Section 2. Di�erent
arrows indicate di�erence in data 
o ws.

�rst de�ne our semantic concept detection scheme in Sec-
tion 2. Then we highlight our video retrieval framework for
automatic search in Section 3. We present the browser in-
novations of our semantic video search engine in Section 4.
We wrap up in Section 5, where we highlight the most im-
portant lessonslearned.

2 Detecting Concepts in Video

We perceive concept detection in video as a combined mul-
timedia analysis and machine learning problem. Given an
n-dimensional multimedia feature vector x i , part of a shot
i [26], the aim is to obtain a measure, which indicates
whether semantic concept ! j is present in shot i . We may
choose from various audiovisual feature extraction meth-
ods to obtain x i , and from a variety of supervised machine
learning approaches to learn the relation between ! j and
x i . The supervisedmachine learning processis composedof
two phases:training and testing. In the �rst phase,the op-

timal con�guration of features is learned from the training
data. In the secondphase,the classi�er assignsa probabil-
it y p(! j jx i ) to each input feature vector for each semantic
concept.

Our TRECVID 2009 concept detection approach builds
on previous editions of the MediaMill semantic video search
engine [32, 36], which draws inspiration from the bag-
of-words approach propagated by Schmid and her asso-
ciates [19,24,51], as well as recent advances in keypoint-
based color features [44] and codebook representations
[45,47]. We improve upon this baselinesystemby exploring
two novel research directions. Firstly , we study a multi-
modal extension by inclusding 20 audio concepts[3,28,40]
and fusion using two novel multi-k ernel supervised learn-
ing methods [38,49]. Secondly, with the help of recently
proposed algorithmic re�nements of the bag-of-words ap-
proach [42], a GPU implementation [43], and compute clus-
ters, we scale-upthe amount of visual information analyzed
by an order of magnitude, to a total of 1,000,000i-frames.
We detail our genericconcept detection schemeby present-
ing a component-wise decomposition. The components ex-
ploit a common architecture, with a standardized input-
output model, to allow for semantic integration. The graph-
ical conventions to describe the system architecture are in-
dicated in Figure 1. Based on these conventions we follow
the video data as it 
o ws through the computational pro-
cess,assummarizedin the generalschemeof our TRECVID
2009 concept detection approach in Figure 2, and detailed
per component next.

2.1 Spatio-Temporal Sampling

The visual appearanceof a semantic concept in video has
a strong dependencyon the spatio-temporal viewpoint un-
der which it is recorded. Salient point methods [41] in-
tro duce robustnessagainst viewpoint changesby selecting
points, which can be recoveredunder di�eren t perspectives.
Another solution is to simply use many points, which is
achieved by densesampling. Appearancevariations caused
by temporal e�ects areaddressedby analyzing video beyond



Figure 3: Generalschemefor spatio-temporal samplingof imagere-
gions, including temporal multi-frame selection,Harris-Laplaceand
densepoint selection, and a spatial pyramid. Detail of Figure 2,
using the conventionsof Figure 1.

the key frame level. By taking more frames into account
during analysis, it becomespossible to recognizeconcepts
that are visible during the shot, but not necessarilyin a sin-
gle key frame. We summarizeour spatio-temporal sampling
approach in Figure 3.

Temporal multi-frame selection In [32, 35] we demon-
strated that a conceptdetection method that considersmore
video content obtains higher performance over key frame-
basedmethods. We attribute this to the fact that the con-
tent of a shot changesdue to object motion, cameramotion,
and imperfect shot segmentation results. Therefore, we em-
ploy a multi-frame sampling strategy. To be precise, we
sampleup to 10 additional i-frames distributed around the
(middle) key frame of each shot.

Harris-Laplace point detecto r In order to determine
salient points, Harris-Laplace relies on a Harris corner de-
tector. By applying it on multiple scales,it is possible to
select the characteristic scale of a local corner using the
Laplacian operator [41]. Hence,for each corner, the Harris-
Laplace detector selectsa scale-invariant point if the local
image structure under a Laplacian operator has a stable
maximum.

Dense point detecto r For concepts with many homoge-
nous areas, like scenes,corners are often rare. Hence, for
theseconceptsrelying on a Harris-Laplace detector can be
suboptimal. To counter the shortcoming of Harris-Laplace,
random and densesampling strategies have beenproposed
[10,17]. Weemploy densesampling,which samplesan image
grid in a uniform fashionusinga �xed pixel interval between
regions. In our experiments we use an interval distance of
6 pixels and sampleat multiple scales.

Spatial pyramid weighting Both Harris-Laplaceand dense
sampling give an equal weight to all keypoints, irrespective
of their spatial location in the image frame. In order to
overcome this limitation, Lazebnik et al. [19] suggest to
repeatedly sample �xed subregionsof an image, e.g.,1x1,
2x2, 4x4, etc., and to aggregate the di�eren t resolutions
into a so called spatial pyramid, which allows for region-
speci�c weighting. Since every region is an image in itself,

Figure 4: Generalschemeof the visual feature extraction methods
usedin our TRECVID 2009 experiments.

the spatial pyramid can be used in combination with both
the Harris-Laplacepoint detector and densepoint sampling.
Similar to [24,32] we usea spatial pyramid of 1x1, 2x2, and
1x3 regions in our experiments.

2.2 Visual Feature Extraction

In the previous section,we addressedthe dependencyof the
visual appearanceof semantic concepts in a video on the
spatio-temporal viewpoint under which they are recorded.
However, the lighting conditions during �lming alsoplay an
important role. Burghouts and Geusebroek [4] analyzedthe
properties of color featuresunder classesof illumination and
viewing changes,such as viewpoint changes,light intensity
changes, light direction changes, and light color changes.
Van de Sande et al. [44] analyzed the properties of color
features under classesof illumination changes within the
diagonal model of illumination change, and speci�cally for
data setsas consideredwithin TRECVID. To speedup the
feature extraction process,we adopt the algorithmic re�ne-
ments of densesampled bag-of-words proposedby Uijlings
et al. [42]. We present an overview of the visual features
used in Figure 4.

SIFT The SIFT feature proposedby Lowe [23] describes
the local shape of a region using edge orientation his-
tograms. The gradient of an imageis shift-invariant: taking
the derivative cancelsout o�sets [44]. Under light intensity
changes,i.e.,a scaling of the intensity channel, the gradient
direction and the relative gradient magnitude remain the
same. Becausethe SIFT feature is normalized, the gradi-
ent magnitude changeshave no e�ect on the �nal feature.
To compute SIFT features,we usethe version described by
Lowe [23].



OpponentSIFT OpponentSIFT describesall the channels
in the opponent color spaceusing SIFT features. The infor-
mation in the O3 channel is equal to the intensity informa-
tion, while the other channels describe the color informa-
tion in the image. The feature normalization, ase�ectiv e in
SIFT, cancelsout any local changesin light intensity.

C-SIFT In the opponent color space,the O1 and O2 chan-
nelsstill contain someintensity information. To add invari-
ance to shadow and shading e�ects, we have proposedthe
C-invariant [12]which eliminates the remaining intensity in-
formation from thesechannels. The C-SIFT feature usesthe
C invariant, which can be intuitiv ely seenas the gradient
(or derivative) for the normalizedopponent color spaceO1=I
and O2=I . The I intensity channel remains unchanged. C-
SIFT is known to be scale-invariant with respect to light
intensity.

rgSIFT For rgSIFT, features are added for the r and
g chromaticit y components of the normalized RGB color
model, which is already scale-invariant [44]. In addition
to the r and g channel, this feature also includes intensity.
However, the color part of the feature is not invariant to
changesin illumination color.

RGB-SIFT For the RGB-SIFT, the SIFT feature is com-
puted for each RGB channel independently . Due to the
normalizations performed within SIFT, it is equal to trans-
formed color SIFT [44]. The feature is scale-invariant, shift-
invariant, and invariant to light color changesand shift.

Fast Dense SIFT/SURF We speed up the calculation of
denselysampled SIFT [23] and SURF [2] in two ways, de-
scribed in detail in [42]. First of all we observe that both
descriptors are spatial. Both are constructed of 4 � 4 sub-
regions which are in turn described by the summation of
pixel-wise responsesover an area. For SIFT the pixel-wise
responsesare oriented gradient responses,for SURF these
are Haar-wavelet responses. By reusing subregionsin de-
scriptor creation, weobtain a speed-improvement of a factor
16. To enable this for SIFT we have to make a slight ad-
justment by removing the GaussianWeighting around the
origin. Experiments showed that this doesnot in
uence the
�nal classi�cation accuracy. For the secondspeedimprove-
ment we deviseda fast way to do summations of pixel-wise
responsesover a subregion. Instead of a nestedfor-loop, we
do the summationsover a subregionusing two matrix multi-
plications [42]. The useof existing, highly optimized matrix
multiplication libraries gives us a speed-improvement of a
factor 2 over a naive C++ implementation.

We compute the SIFT [23] and ColorSIFT [44] features
around salient points obtained from the Harris-Laplace de-
tector and densesampling. In addition, we compute SURF
[2] features around fast densesampled points [42]. For all
visual featuresweemploy a spatial pyramid of 1x1, 2x2, and
1x3 regions.

Figure 5: Generalschemefor transforming visual features into a
codebook, wherewe distinguishbetweencodebook construction us-
ing clustering and soft codeword assignment. We combine various
codeword frequencydistributions into a kernel library.

2.3 Codebook Transform

To avoid using all visual features in an image, while incor-
porating translation invariance and a robustnessto noise,
we follow the well known codebook approach, see e.g.,
[17,20,30,45,47]. First, we assign visual features to dis-
crete codewords prede�ned in a codebook. Then, we use
the frequency distribution of the codewords as a compact
feature vector representing an imageframe. By using a vec-
torized GPU implementation [43], our codebook transform
processis an order of magnitude faster for the most ex-
pensive feature compared to the standard implementation.
Two important variables in the codebook representation are
codebook construction and codeword assignment. Basedon
last year's experiments we employ codebook construction
using k-meansclustering in combination with soft codeword
assignment and a maximum of 4,096 codewords, following
the schemein Figure 5.

Soft-assignment Given a codebook of codewords, ob-
tained from clustering, the traditional codebook approach
describeseach feature by the singlebest representativ ecode-
word in the codebook, i.e.,hard-assignment. However, in a
recent paper [47], weshow that the traditional codebook ap-
proach may be improved by using soft-assignment through
kernel codebooks. A kernel codebook usesa kernel function
to smooth the hard-assignment of image features to code-
words. Out of the various forms of kernel-codebooks, we
selectedcodeword uncertainty basedon its empirical perfor-
mance[47].

Kernel library Each of the possible sampling methods
from Section 2.1 coupled with each visual feature extrac-
tion method from Section 2.2, a clustering method, and
an assignment approach results in a separate visual code-
book. An example is a codebook basedon densesampling
of rgSIFT features in combination with k-means cluster-
ing and soft-assignment. We collect all possible codebook
combinations in a (visual) kernel library . By using a GPU
implementation [43], this kernel library can be computed
e�cien tly . Naturally , the codebooks can be combined us-



ing various con�gurations. Depending on the kernel-based
learning scheme used, we simply employ equal weights in
our experiments or learn the optimal weight using cross-
validation.

2.4 Audio Concept Detection

The work on extracting audio-related conceptsfrom the au-
diovisual signal wasdoneby INESC-ID, emphasizingin par-
ticular audio segmentation and audio event detection meth-
ods [3,28,40].

Audio segmentation The audio segmentation module in-
cludes six separate components: one for Acoustic Change
Detection, four components for classi�cation (Speech/Non-
speech, Background, Genderand Speaker Identi�c ation) and
one for Speaker Clustering. These components are mostly
model-based, making extensive use of feed-forward fully
connectedMulti-La yer Perceptrons trained with the back-
propagation algorithm. All the classi�ers share a similar
architecture: a Multi-La yer Perceptron with 9 input con-
text frames of 26 coe�cien ts (12th order Perceptual Lin-
ear Prediction plus energy and deltas), two hidden layers
with 250 sigmoidal units each and the appropriate number
of softmax output units (one for each class), which can be
viewed as giving a probabilistic estimate of the input frame
belonging to that class. The Speaker Clustering component
tries to group all segments uttered by the same speaker.
The �rst frames of a new segment are compared with all
the samegender clusters found so far. A new speech seg-
ment is merged with the cluster with the lowest distance,
provided it falls below a prede�ned threshold. The dis-
tance measurefor merging clusters is a modi�ed version of
the Bayesian Information Criterion. The 4 audio concepts
female-voice, child-voice, music, and dialogue could poten-
tially be used for detecting the TRECVID video concepts
Infant , Classroom, Female-close-up, Two-People, People-
Dancing, Person-Playing-Music-Instrument, and Singing.

Audio event detection The audio event detection mod-
ule currently includes more than 70 one-against-all seman-
tic concept classi�ers. For each audio event, world and
concept exampleswere chosen from a corpus of sound ef-
fects, in order to train models, using a radial basis func-
tion support vector machine classi�er. Audio features were
retrieved using 500 ms window, with 50% overlap: mel-
frequencycepstral coe�cien ts and derivatives,zerocrossing
rate, brightness, and bandwidth. The latter are, respec-
tiv ely, the �rst and secondorder statistics of the spectro-
gram, and they roughly measurethe timbre quality. The F-
measureresults on a separatetest corpus of isolated sound
e�ects weregenerally very good (above 0.8), but the results
in real life TRECVID data show the degradation that can
be expected from the fact that audio events almost never
occur separately, being corrupted by music, speech, back-
ground noiseand/or other audio events. More sophisticated

support vector machine detectors have been built, using
new features,di�eren t window sizes,di�eren t ways of incor-
porating context, and dimensionality reduction techniques.
The time constraints of this evaluation campaign, how-
ever, motivated the useof the described baselineapproach.
The list of 16 audio event adopted in TRECVID includes:
Child-laughter, Baby-crying, Airplane-propeller, Airplane-
jet, Sirens, Tra�c-noise , Car-engine, Bus-engine, Dog-
barking, Telephone-digital, Telephone-analog, Door-open-
close, Applause, Bite-eat, Water and Wind.

2.5 Kernel-based Learning

Learning robust conceptdetectorsfrom multimedia features
is typically achievedby kernel-basedlearning methods. Sim-
ilar to previousyears,we rely predominantly on the support
vector machine framework [48] for supervised learning of
semantic concepts. Here we use the LIBSVM implementa-
tion [7] with probabilistic output [21,27]. In order to handle
imbalance in the number of positive versusnegative train-
ing examples,we �x the weights of the positive and negative
classby estimation from the classpriors on training data.
While the radial basiskernel function usually performs bet-
ter than other kernels, it was recently shown by Zhang et
al. [51] that in a codebook-approach to concept detection
the earth movers distance [29] and � 2 kernel are to be pre-
ferred. In general,we obtain good parameter settings for a
support vector machine, by usingan iterativ esearch on both
C and kernel function K (�) on cross validation data [46].
In addition to the support vector machine framework, we
also study the suitabilit y of two novel multi-k ernel learning
methods for conceptdetection: Kernel Discriminant Analy-
sis using Spectral Regressionand Non-Sparse Multiple Ker-
nel Fisher Discriminant Analysis.

Multi-Kernel: SR-KDA Linear Discriminant Analy-
sis [11], which is one of the most widely used statistical
methods, has beenproven successfulin many classi�cation
problems. Recently , Spectral Regressioncombined with
Kernel Discriminant Analysis (SR-KDA) intro ducedby Cai
et al [5] hasbeensuccessfulin many classi�cation taskssuch
as multi-class face, text and spoken letter recognition. The
method combinesthe spectral graph analysisand regression
for an e�cien t large matrix decomposition in Kernel Dis-
criminant Analysis. It has beendemonstrated in [5] that it
can achieve an order of magnitude speedupover the eigen-
decomposition while producing smaller error rate compared
to state-of-the-art classi�ers. In [38], we have shown the
e�ectiv enessof SR-KDA for large scale concept detection
problem. In addition to superior classi�cation results when
compared to existing approaches, it can provide an order
of magnitude speed-up over support vector machine. The
main computationally intensive operation is Cholesky de-
composition, which is actually independent of the number
of labels. For more details pleaserefer to [38].
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Figure 6: Generalschemefor kernel-basedlearning with support
vector machinesand two novelmulti-kernel learning methods, using
episode-constrainedcross-validationfor parametersselection.

Multi-Kernel: MK-FD A Kernel Fisher discriminant anal-
ysis hasproven to be a very successfulclassi�cation method
in various applications. In many real-world problems, mul-
tiple kernelscapturing di�eren t \views" of the problem are
available. In such a situation, one naturally wants to use
an \optimal" combination of the kernels. In [50], the au-
thors proposedmultiple kernel Fisher discriminant analysis
(MK-FD A), wherethe key idea is to learn the optimal linear
combination of kernelsby maximizing the ratio of the pro-
jected between-classand within-class scatters with respect
to the kernel weights. In [50], the kernel weights are reg-
ularized with an `1 norm, which enforcessparsity but may
lead to a loss of information. To remedy this, we propose
to use an `2 norm regularization instead. We formulate `2

MK-FD A as a semi-in�nite program, which can be solved
e�cien tly . Experiments show that `2 regularization tends to
produce non-sparsesolutions. As a result, lessinformation
is lost during the kernel learning process,and the perfor-
manceis improved over `1 MK-FD A as well as the uniform
weighting scheme. For more details on non-sparseMK-FD A
pleaserefer to [49].

Episode-constrained cross-validation From all parame-
ters q we select the combination that yields the best av-
erage precision performance, yielding q� . We measure
performance of all parameter combinations and select the
combination that yields the best performance. We use a
3-fold cross validation to prevent over-�tting of parame-
ters. Rather than using regular cross-validation for sup-
port vector machine parameter optimization, we employ an
episode-constrained cross-validation method, asthis method
is known to yield a lessbiasedestimate of classi�er perfor-
mance[46].

The result of the parameter search over q is the improved
model p(! j jx i ; q� ), contracted to p� (! j jx i ), which we useto
fuse and to rank concept detection results.

2.6 Submitted Concept Detection Results

We investigated the contribution of each component dis-
cussedin Sections 2.1{2.5, emphasizing in particular the
role of audio, multi-k ernel learning, and scalability by pro-
cessing1,000,000i-frames. In our experimental setup we
usedthe TRECVID 2007development set asa training set,
and the TRECVID 2007 test set as a validation set. The
ground truth usedfor learning and evaluation are a combi-
nation of the common annotation e�ort [1] and the ground
truth provided by ICT-CAS [39]. An overview of our sub-
mitted concept detection runs is depicted in Figure 7, and
detailed next.

Run: Joe The Joe run is our single key frame baseline. It
applies the standard sequential forward selectionfeature se-
lection method on all (visual) kernel libraries computedover
key frames only. It obtained a mean infAP of 0:175. This
run tends to lag behind our other (multi-frame) runs, espe-
cially for dynamic conceptssuch as airplane 
ying , people
dancing, person riding bicycle, person playing soccer, and
person eating.

Run: William The William run is a cooperation between
the University of Amsterdam and the University of Surrey.
In this run, each (visual) kernel is trained using SR-KDA
with regularization parameter � [38] which is tuned for each
concept using the validation set. Further, instead of using
equal weights for each classi�er during fusion, weights for
individual kernelsare learnt for each conceptusing the clas-
si�cation accuracy i.e. averageprecision on the validation
set. The weighted output from each classi�er is then com-
bined using the SUM rule [18]. This run has achieved a
mean infAP of 0:190. For someconcepts(cityscape, people
dancing, boat/ship ), results are comparable to our top run
methods despite the fact that only 1 key frame is processed
for every shot in this run while multi-frames per shot are
processedin our top runs.

Run: Jack The Jack run is a cooperation between the
University of Amsterdam, INESC-ID, and the University
of Surrey. In addition to the visual kernels, we also gener-
ated an audio kernelusing INESC's audio conceptdetectors.
More speci�cally , the 20 output scoresof the 20 audio con-
cept detectors were usedas 20 features,and an RBF kernel
was build from these features. This audio kernel together
with the visual kernels were then used as input to Non-
SparseMultiple Kernel Fisher Discriminant Analysis (MK-
FDA) [49], where the optimal kernel weights were learned
for each semantic concept. Experiments on the validation
set show that by intro ducing the audio kernel to the kernel
set, the meanaverageprecision is improved by 0.01. On the
TRECVID 2009 test set this run obtains a mean infAP of
0:193. The conceptsthat bene�t most from the audio kernel
are: person playing musical instrument, female human face
closeup, infant , singing, and airplane 
ying .
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Figure 7: Comparison of MediaMill videoconceptdetection experimentswith other conceptdetection approachesin the TRECVID 2009
High-levelFeature Task benchmark.

Run: Averell The Averell run is basedon a (visual) kernel
library basedon SIFT, OpponentSIFT, C-SIFT, and RGB-
SIFT only, which have beenapplied spatio-temporally with
up to 5 additional i-frames per shot in combination with
a M AX rule combination. This run achieved a mean in-
fAP of 0:219,with the overall highest infAP for 3 concepts:
doorway, person playing soccer, and person eating.

Run: Rantanplan The Rantanplan run selects from all
the (visual) kernel libraries, all of which have beenapplied
spatio-temporally with up to 10 additional i-framesper shot
in combination with AV G and M AX rule combination, the
best performer per concept. This run achieved a mean in-
fAP of 0:224,with the overall highest infAP for 4 concepts:
tra�c intersection, airplane 
ying , demonstration/pr otest,
and female human face closeup.

Run: Luke The Luke run extends upon the Rantanplan
run, by applying the standard sequential forward selection
feature selectionmethod on all (visual) kernel libraries com-
puted over 1,000,000i-frames. This run achieved the over-
all highest mean infAP in the TRECVID2009 benchmark
(0:228), with the overall highest infAP for 4 concepts: class-
room, nighttime, hand, and female human face closeup.

2.7 64 Robust Concept Detecto rs

Similar to our TRECVID 2008participation, we again aim
for a small but robust lexicon of concept detectors this
year. To that end we have employed our Averell run
setting on the concept sets of TRECVID 2008 (20 con-
cepts), TRECVID2007 (36 concepts) and an additional

black/white detector. All 64 detectors have been donated
to the TRECVID communit y1 and are included in the 2009
MediaMill semantic video search enginefor the retrieval ex-
periments.

3 Automatic Video Retrieval

The MediaMill team continued its e�ort on automatic
search, this year submitting 8 automatic runs. The overall
architecture of the search systemwasbasedon 3 fundamen-
tal search types| transcript-basedretrieval, detector-based
retrieval, and feature-basedretrieval | each of which was
submitted individually as a run. In addition we submit-
ted 5 combination runs, consisting of query-dependent and
query-independent approachesto video automatic search.

3.1 Baseline Retrieval Approaches

Our baselinescorrespond to the three information sources
of: transcripts, detectors, and low-level features. Theseare
implemented as follows:

Pippin: Transcript-based search Our transcript-based
search approach is similar to that of last year, incorpo-
rating Dutch automatic speech recognition transcripts and
English automatic machine translation transcripts [6]. This
year both the University of Twente [13] and LIMSI [9] do-
nated speech recognition transcripts. We evaluated both
for retrieval using the 2007 topics, and found that overall
retrieval performancecould be improved by combining the

1Available from: http://trecvid.nist.gov /tr ecvi d.d ata. html



text of both transcripts. This was further con�rmed for
the 2009 topics with three additional (unsubmitted) runs
that we performed using this year's topics. A run using
only University of Twente transcripts gainedan MAP score
of 0.007, a run using only LIMSI transcripts gained an
MAP scoreof 0.009,and a run using combined transcripts
gained an MAP score0.010. We combined the text of both
transcripts together with the machine translation for this
year's entry , which resulted in a decreased�nal score of
0.009. At retrieval time, each topic statement was auto-
matically translated into Dutch using the online translation
tool http://translate .g oogle .c om, allowing a search on
the machine-translated transcripts with the original (En-
glish) topic text, and a search on transcripts from auto-
matic speech recognition using the translated Dutch topic
text. The two resulting ranked lists were then combined
to form a single list of transcript-based search results. To
compensate for the temporal mismatch between the audio
and the visual channels,we usedour temporal redundancy
approach [14]. To summarize this approach, the transcript
of each shot is expandedwith the transcripts from tempo-
rally adjacent shots, where the words of the transcripts are
weighted according to their distance from the central shot.

Sam: Detecto r-based search The detector-basedsearch,
using our lexicon of 64 robust concept detectors, consisted
of two main steps: 1) conceptselectionand 2) detector com-
bination. We evaluated a number of concept selection ap-
proaches using a benchmark set of query-to-concept map-
pings, adapted from [15] to the new lexicon. The �nal
concept selectionmethod usedfor automatic search was to
average the score for a concept detector on the provided
topic video examples,and select conceptsthat scoredover
a threshold. In addition, any detectors with high informa-
tion content, that were also WordNet synonyms of terms
in the topic text, were also selected. As for the combina-
tion of multiple selectedconceptsfor a topic, this was done
by simply taking the product of the raw selecteddetector
scoresfor each shot as its retrieval score. No extra nor-
malization or parametrization was done, nor were concepts
weighted according to their computed score for the exam-
ples. Rather, we usedthe triangulation of concept detector
scoresto provide information on the relevanceof a shot to
a query.

Merry: Feature-based search As we did last year, we
treat feature-basedsearch as an on-the-
y concept learning
problem, with the provided topic video examplesaspositive
examples, and randomly selectedshots from the test col-
lection as pseudo-negative examples.Spatio-temporal sam-
pling of interest regions,visual feature extraction, codebook
transform, and kernel-basedlearning weredoneasdescribed
in Section 2. The resulting model was applied to the shots
in the test collection, shots were ranked according to the
probabilistic output scoreof the support vector machine.

3.2 Query-(In)dep endent Multimo dal Fusion

The �nal step in our retrieval pipeline is multimo dal fu-
sion. Our aim here was to (1) comparequery-dependent vs
query-independent methods, and (2) investigate the use of
the learning to rank framework [22] for video retrieval. In
all casesweights and/or models were developed using the
TRECVID 2007 and 2008 topics for training. Learning to
rank wasdoneaccordingto the SVM-Rank implementation
for learning to rank [16].

Gimli: Query-independent fusion Linear combination of
the three baselineapproachesusing weighted combsum fu-
sion.

Legolas: Query-independent learning to rank Learning
to rank-basedcombination of the three baselineapproaches.

Aragorn: Query-class based fusion Query-class depen-
dent linear combination of the three baselineapproachesus-
ing weighted combsum fusion. We utilize the query classes
and classi�cation methodology employed by Mei et al. [25].

Gandalf: Predictive reranking Similarly to last year, pre-
dict which baselineapproach will give the best performance,
using various query and result-basedfeaturesfor prediction.
Rerank the resultsof the predicted bestbaselinewith results
from the other two baselines.

Frodo: Query-dependent Learning to Rank Learning to
rank-basedcombination of all 6 aforementioned automatic
search runs.

3.2.1 Automatic Search Results

Onceagain this year, the transcript baselinehad the lowest
overall MAP of all runs with a score of 0.009. At 0.068,
detector-basedsearch is the best performing baseline,while
feature-basedsearch also does relatively well with a score
0.053. Of the combination approaches, query-dependent
learning to rank gives the best retrieval performance of
0.089. Surprisingly, query-independent learning to rank
gives the lowest performance over all combination strate-
gies. In these experiments, the learning to rank-method is
more e�ectiv e when given both query-dependent and query-
independent results as input features.

Figure 8 provides a topic-level summary of the perfor-
manceof the MediaMill automatic search runs. We seethat
transcript-based search had consistently low performance,
though it did achieve a high AP scorerelative to other runs
for an airplane or helicopter on the ground, seen from out-
side. Feature-basedsearch gave higher performance,doing
well for visually distinctiv e scenessuch as a building en-
trance and printed, typed, or handwritten text, �l ling more
than half of the frame area. Detector-based search per-
formed best for topics where one or more closely related
detectors where available, for instance something burning
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Figure 8: Topic-level comparison of MediaMill automatic video search experiments with other automatic search approachesin the
TRECVID 2009 benchmark.

with 
ames visible, where the explosion/�r e detector was
selected,and street sceneat night wherethe street and night
detectors were selectedfor search. Sometimesresults were
disappointing: performance for the query for one or more
dogs, walking, running, or jumping, wherethe dog detectors
was selected,was severely degradedby inclusion of scores
from the people walking detector.

The performanceof the query-dependent learning to rank
run is 0.089. If we were to selectthe best performing of the
three baselinesfor each topic, the performance would also
be 0.089. This indicates that the fusion approach is capable
of performing at least as well as a \b est of" approach, at
least on an overall level. Performanceover individual topics
varies, a large boost in performance is obtained for topics
wheremore than onebaselinedoeswell, for examplefor a a
building entrance AP is increasedby 0.098, and for one or
more people, each at a table or deskwith a computer visible,
performance more than doubles compared to the highest
performing baselinerun. Conversely, when a singlebaseline
outperforms the others to a great degree, fusion tends to

reduceperformanceas comparedto the best baseline. This
is the casefor examplewith the topics a street sceneat night
and somethingburning with 
ames visible.

4 Interactive Video Retrieval

The performanceof interactivevideosearch enginesdepends
on many factors, such asthe chosenquery method, the used
browsing interface with its implied interaction scheme,and
the level of expertise of the user. Moreover, when search
topics are generic and diverse, it is hard to predict which
combination of factors yields optimal performance. There-
fore, current video search engineshave traditionally o�ered
multiple query methods in an integrated browse environ-
ment. This allows the user to choosewhat is needed.How-
ever, while this does o�er the user complete control over
which strategy to usefor which topic, it alsoallows the user
to inadvertently selecta sub-optimal strategy.



Figure 9: Screenshotsof the MediaMill semanticvideo search enginewith its query interface (left), its ForkBrowser [8] (right), and its
CrossBrowser [37] (inset).
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Figure 10: Comparison of MediaMill interactive video search experiments with other interactive video search enginesin the TRECVID
2009 benchmark.

4.1 Thread-Based Browsing

The basis for our TRECVID 2009 experiments is the Me-
diaMill Semantic Video Search Engine, seeFigure 9. The
basic building block behind the browsing interface is the
thread; a linked sequenceof shots in a speci�ed order, based
upon an aspect of their content [8]. Thesethreads span the

video archive in several ways. For example, time threads
span the temporal similarit y betweenshots, visual threads
span the visual similarit y between shots, a query thread
spans the similarit y between a shot and a user-imposed
query, and history threads span the navigation path the
user follows.



The MediaMill Semantic Video Search Engine allowsuser
to choosebetweentwo modesfor thread visualization. The
�rst visualization, the CrossBrowsershows the query thread
and the time thread in a cross formation. This visualiza-
tion is most e�cien t for topics wherea singleconceptquery
is su�cien t for solving a topic [33,37]. The secondvisual-
ization, the ForkBrowser, provides the user with two extra
diagonal threads, and a history thread. The ForkBrowseris
more e�cien t in handling complex querieswhere no direct
mapping betweenavailable conceptdetectors is possible[8].

4.2 Guiding The User to Results

Our TRECVID Interactive Retrieval experiments focus on
helping users to determine the utilit y of a given retrieval
strategy, and on guiding them to a correct set of results. To
this end we investigate the bene�t of two strategies within
the MediaMill Semantic Video Search Engine.

To help users determine the utilit y of a given retrieval
strategy we intro duceActiv e Zooming. This aids usersboth
by helping determine that a subset of visible results is not
relevant, and by helping to �nd a starting point within the
selectedresults. Activ e Zooming enablesthe user to quickly
and seamlesslyvisualize a large set of results from a single
thread at once. This allows users to make blink-of-an-eye
decisionsabout the contents of a single thread, or, in the
caseof many relevant results, to quickly selectlarge batches
of relevant results at once. The user is then able to ei-
ther continue browsing the thread, or go back to any other
thread.

To help guide usersto correct results we intro ducea Rel-
evanceFeedback strategy basedon passive sampling of user
browsing behavior in order to guide usersto more relevant
results. For this, the systemcontinuously monitors userbe-
havior and usesthis information on-demand to generatea
new set of results. It does so by training a support vector
machine model based on positive examplesobtained from
the user, and negative examplesobtained by passive moni-
toring. By using a pre-computedkernel matrix of inter-shot
distancesthis can be done interactively. The end result is a
reranking of the entire collection, which is then available as
a thread for visualization.

4.3 Interactive Search Results

We submitted two runs for interactive search. The Sauron
run was performed by a single expert user. The user was
instructed to use the ForkBrowser with Gabor and Wic-
cest [45] similarit y threads. The user was allowed to use
Activ e Zooming and RelevanceFeedback techniques on de-
mand. The Saruman run was performed by another sin-
gle expert user. The user was instructed to use the Cross-
Browsertogether with Activ e Zooming and RelevanceFeed-
back. We provide a preliminary analysisof the logging data
for both runs.

In Figure 10 we show a per-topic overview of interactive
video retrieval results. The log-analysis indicates that the

usersemployeda variety of strategiesto retrieveresults. We
highlight a few typical cases.When relevant conceptdetec-
tors are available for a topic, these are taken as the entry
point for search by both users. For example, the usersse-
lected the Hand detector for the topic a closeupof a hand,
writing, drawing, coloring, or painting. We found the capa-
bilit y to analyze and view multiple frames from individual
shots to be a signi�can t bene�t. For example, the results
for one or more dogs... were largely found by selecting the
opening credits of a single television program, in which a
dog can be seenrunning. This was however not apparent
in the key frames of these shots. For other topics, such as
train in motion or camera zooming in on a face, we found
that showing motion enabled the usersto correctly answer
the topics. One user further increasedthe result for the lat-
ter topic by a creative useof Activ e Zooming: the zoom-in
motion wasvisually easilydistinguishablewhich allowed the
user to select relevant shots rapidly. Furthermore we found
that almost all topics bene�ted from Relevance Feedback,
though the speci�c per-topic bene�ts are still being investi-
gated. In most casesthe usersalsochoseto auto-extend the
set of interactively selectedresults with relevance feedback
results.

Overall our approachesare the two bestperforming meth-
ods in the interactive video search task (Saruman: 0.246;
Sauron: 0.241), yielding the highest infAP scoresfor 18 out
of 24 topics. This indicates that our thread-basedbrowsing
approach combined with robust concept detectors and rele-
vancefeedback basedon passiveobservation yields excellent
search results.

5 LessonsLearned

TRECVID continuesto be a rewarding experiencein gain-
ing insight in the di�cult problem of concept-basedvideo
retrieval [31]. The 2009edition has again beena very suc-
cessfulparticipation for the MediaMill team resulting in top
ranking for both concept detection and interactive search,
seeFigure 11 for an overview. To conclude this paper we
highlight our most important lessonslearned:

� By reusing subregions in the descriptors, we obtain a
speed-improvementof a factor 16 [42];

� Concept detection using the GPU is power-e�cient
[43];

� Multi-modal concept detection using multi-kernel super-
vised learning seems promising but more experiments
are needed to be conclusive;

� Multi-fr ame processing is a true performance booster,
indicating the time has arrived to move on to video
analysis;

� Query-dependent learning to rank is a solid choice for
automatic search;
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Figure 11: Overviewof the 2009TRECVID benchmark tasks in which MediaMill was the best overall performer. Top: conceptdetection
and bottom: interactive search, all runs ranked according to mean inferred averageprecision.

� Thread-based Fork- and CrossBrowsing using robust
concept detectors and on-the-
y learning yields excel-
lent search results;
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