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Abstract

In this paper we descrite our TRECVID 2009 video re-
trieval experiments. The MediaMill team participated in
three tasks: concept detection, automatic search, and in-
teractive search. The starting point for the MediaMil | con-
cept detection approach is our top-performing bag-of-woids
system of last year, which usesmultiple color descriptors,
codelwoks with soft-assignment,and kernel-tased supervised
learning. We improve upon this baseline system by explor-
ing two novel resarch directions. Firstly, we study a multi-
modal extension by including 20 audio concepts and fusion
using two novel multi-kernel supervisad learning methals.
Secondly, with the help of recently proposed algorithmic re-
nements of bag-of-word representations,a GPU implemen-
tation, and compute clusters, we sale-up the amount of vi-
sual information analyzal by an order of magnitude, to a
total of 1,000,000 i-frames. Our experiments evaluate the
merit of thesenew components, ultimately leading to 64 ro-
bust concept detectors for video retrieval. For retrieval, a
robust but limited set of concept detectors justi es the need
to rely on as many auxiliary information channelsas pos-
sible. For automatic search we therefore explore how we
can learn to rank various information channels simultane-
ously to maximize video search resultsfor a given topic. To
further improve the video retrieval results, our interactive
sarch experiments investigate the roles of visualizing pre-
view results for a certain browse-dimensionand relevane
feedback mechanismsthat learn to solvecomplexsearch top-
ics by analysis from user browsing behavior. The 2009 edi-
tion of the TRECVID benchmark has again been a fruitful
participation for the MediaMill team, resulting in the top
ranking for both concept detection and interactive search.
Again a lot has been learned during this year's TRECVID
campaign; we highlight the most important lessonsat the
end of this paper.

1 Intro duction

Robust video retrieval is highly relevant in a world that is
adapting swiftly to visual communication. Online services

like YouTube and Vimeo shaow that video is no longer the
domain of broadcast television only. Video has becomethe
medium of choice for many people communicating via the
Internet. Most commercial video seard enginesprovide ac-
cessto video basedon text, as this is still the easiestway
for a userto describe an information need. The indices of
theseseard enginesare basedon the lename, surrounding
text, social tagging, closedcaptions, or a speed transcript.
This results in disappointing retrieval performance when
the visual content is not mentioned, or properly re ected in
the assaiated text. In addition, when the videos originate
from non-English speaking courtries, sudc as China, or the
Netherlands, querying the content becomesmuch harder as
robust automatic speed recognition results and their accu-
rate machine translations are di cult to achieve.

To cater for robust videoretrieval, the promising solutions
from literature are mostly concept-based[34], where detec-
tors are related to objects, like an airplane ying , scenes,
like a classioom, and people, lik e female human face closeup
Any one of those brings an understanding of the current
cortent. The elemerns in suc a lexicon of concept detec-
tors o er usersa semartic entry to video by allowing them
to query on presenceor absenceof visual content elemens.
Last year we preseried the MediaMill 2008 semartic video
seart engine[32], which aimed for more robustnessof con-
cept detectorsin the lexicon rather than extending the num-
ber of detectors. Our TRECVID 2009experiments cortin ue
this emphasison robustnessfor a relatively small set of con-
cept detectors. A robust but limited setof conceptdetectors
justi es the needto rely on asmany multimedia information
channels as possiblefor retrieval. To that end, we explore
how we can learn to rank various information channels si-
multaneously to maximize video seard results for a given
topic. To improve the retrieval results further, we extend
our interactive browsers by supplemering them with vi-
sualizations for swift inspection, and a relevance feedbak
mecdanism basedon passive sampling of user browsing be-
havior. Takentogether, the MediaMill 2009 sematrtic video
seard engineprovides userswith robust sematic accesgo
video archives.

The remainder of the paper is organized as follows. We
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Figure 2: MediaMill TRECVID 2009 concept detection scheme,using the conventionsof Figure 1. The schemeservesas the blueprint
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Data flow conventions

Shot segmented video

Spatio-temporal image regions

Y

Visual features

Codebook

-

Codeword frequency distribution

Kernel library

||

Learning parameters

= = =>» Concept confidence

Figure 1: Data ow conventionsas usedin Section 2. Dierent
arrows indicate di erence in data o ws.

rst de ne our semariic concept detection schemein Sec-
tion 2. Then we highlight our video retrieval framework for
automatic seard in Section 3. We presert the browser in-
novations of our semartic video seart enginein Section 4.
We wrap up in Section 5, where we highlight the most im-
portant lessonslearned.

2 Detecting Concepts in Video

We perceive concept detection in video as a combined mul-
timedia analysis and machine learning problem. Given an
n-dimensional multimedia feature vector x;, part of a shot
i [26], the aim is to obtain a measure, which indicates
whether semartic concept! ; is presert in shoti. We may
choose from various audiovisual feature extraction meth-
ods to obtain x;, and from a variety of supervised machine
learning approadhesto learn the relation between!; and
Xj. The supervised machine learning processis composedof
two phases:training and testing. In the rst phase,the op-

timal con guration of featuresis learned from the training
data. In the secondphase,the classi er assignsa probabil-
ity p(! jjxi) to ead input feature vector for eadr semartic
concept.

Our TRECVID 2009 concept detection approach builds
on previous editions of the MediaMill semartic video seard
engine [32, 36], which draws inspiration from the bag-
of-words approach propagated by Scmid and her asso-
ciates [19,24,51], as well as recert advancesin keypoint-
based color features [44] and codebook represenations
[45,47]. We improve upon this baselinesystemby exploring
two novel researt directions. Firstly, we study a multi-
modal extension by inclusding 20 audio concepts|[3,28,40]
and fusion using two novel multi-k ernel supervised learn-
ing methods [38,49]. Secondly with the help of recertly
proposed algorithmic re nements of the bag-of-words ap-
proach [42], a GPU implementation [43], and compute clus-
ters, we scale-upthe amount of visual information analyzed
by an order of magnitude, to a total of 1,000,000i-frames.
We detail our genericconceptdetection schemeby presen-
ing a component-wise decomposition. The componerts ex-
ploit a common architecture, with a standardized input-
output model, to allow for semartic integration. The graph-
ical convertions to describe the system architecture are in-
dicated in Figure 1. Basedon these convertions we follow
the video data asit ows through the computational pro-
cess,assummarizedin the generalschemeof our TRECVID
2009 concept detection approadc in Figure 2, and detailed
per componert next.

2.1 Spatio-Temporal Sampling

The visual appearanceof a semartic conceptin video has
a strong dependencyon the spatio-temporal viewpoint un-
der which it is recorded. Saliert point methods [41] in-
troduce robustnessagainst viewpoint changesby selecting
points, which can be recoveredunder di erent perspectives.
Another solution is to simply use many points, which is
achieved by densesampling. Appearancevariations caused
by temporal e ects are addressedyy analyzing video beyond
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Figure 3: Generalschemefor spatio-temporal samplingof imagere-
gions, including temporal multi-frame selection,Harris-Laplaceand
densepoint selection, and a spatial pyramid. Detail of Figure 2,
using the conventionsof Figure 1.

the key frame level. By taking more frames into accourt
during analysis, it becomespossibleto recognizeconcepts
that are visible during the shot, but not necessarilyin a sin-
gle key frame. We summarizeour spatio-temporal sampling
approad in Figure 3.

Temporal multi-frame selection In [32,35] we demon-
strated that a conceptdetection method that considersmore
video content obtains higher performance over key frame-
basedmethods. We attribute this to the fact that the con-
tent of a shot changesdueto object motion, cameramotion,
and imperfect shot segmetation results. Therefore, we em-
ploy a multi-frame sampling strategy. To be precise, we
sampleup to 10 additional i-frames distributed around the
(middle) key frame of ead shot.

Harris-Laplace point detector In order to determine
saliert points, Harris-Laplace relies on a Harris corner de-
tector. By applying it on multiple scales,it is possibleto
select the characteristic scale of a local corner using the
Laplacian operator [41]. Hence,for eadh corner, the Harris-
Laplace detector selectsa scale-invariant point if the local
image structure under a Laplacian operator has a stable
maximum.

Dense point detector For conceptswith many homoge-
nous areas, like scenes,corners are often rare. Hence, for
these conceptsrelying on a Harris-Laplace detector can be
suboptimal. To counter the shortcoming of Harris-Laplace,
random and densesampling strategies have been proposed
[10,17]. We employ densesampling, which samplesan image
grid in auniform fashionusinga xed pixel interval between
regions. In our experiments we use an interval distance of
6 pixels and sampleat multiple scales.

Spatial pyramid weighting Both Harris-Laplaceand dense
sampling give an equal weight to all keypoints, irrespective
of their spatial location in the image frame. In order to
overcome this limitation, Lazebnik et al. [19] suggestto
repeatedly sample xed subregionsof an image, e.g.,1x1,
2x2, 4x4, etc., and to aggregatethe dierent resolutions
into a so called spatial pyramid, which allows for region-
speci ¢ weighting. Since every region is an image in itself,
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Figure 4: Generalschemeof the visual feature extraction methods
usedin our TRECVID 2009 experiments.

the spatial pyramid can be usedin combination with both
the Harris-Laplace point detector and densepoint sampling.
Similar to [24,32] we usea spatial pyramid of 1x1, 2x2, and
1x3 regionsin our experiments.

2.2 Visual Feature Extraction

In the previous section, we addressedhe dependencyof the
visual appearanceof semartic conceptsin a video on the
spatio-temporal viewpoint under which they are recorded.
Howewer, the lighting conditions during Iming alsoplay an
important role. Burghouts and Geusebraek [4] analyzedthe
properties of color featuresunder classef illumination and
viewing changes,sud as viewpoint changes,light intensity
changes, light direction changes, and light color changes.
Van de Sande et al. [44] analyzed the properties of color
features under classesof illumination changeswithin the
diagonal model of illumination change, and speci cally for
data setsas consideredwithin TRECVID. To speedup the
feature extraction process,we adopt the algorithmic re ne-
ments of densesampled bag-of-words proposedby Uijlings
et al. [42]. We presert an overview of the visual features
usedin Figure 4.

SIFT The SIFT feature proposedby Lowe [23] describes
the local shape of a region using edge orientation his-
tograms. The gradient of an imageis shift-invariant: taking
the derivative cancelsout o sets [44]. Under light intensity
changes,i.e.,a scaling of the intensity channel, the gradient
direction and the relative gradient magnitude remain the
same. Becausethe SIFT feature is normalized, the gradi-
ent magnitude changeshave no e ect on the nal feature.
To compute SIFT features, we usethe versiondescribed by
Lowe [23].



OpponentSIFT  OpponenSIFT describesall the channels
in the opponert color spaceusing SIFT features. The infor-
mation in the O3 channelis equalto the intensity informa-
tion, while the other channels describe the color informa-
tion in the image. The feature normalization, ase ectiv ein
SIFT, cancelsout any local changesin light intensity.

C-SIFT In the opponert color space,the O; and O, chan-
nelsstill contain someintensity information. To add invari-
anceto shadov and shading e ects, we have proposedthe
C-invariant [12] which eliminates the remaining intensity in-
formation from thesechannels. The C-SIFT feature usesthe
C invariant, which can be intuitiv ely seenas the gradient
(or derivative) for the normalized opponert color spaceO; =l
and O,=I. The | intensity channel remains unchanged. C-
SIFT is known to be scale-invariant with respect to light
intensity.

rgSIFT For rgSIFT, features are added for the r and
g chromaticity componerts of the normalized RGB color
model, which is already scale-irvariant [44]. In addition
to the r and g channel, this feature also includes intensity.
However, the color part of the feature is not invariant to
changesin illumination color.

RGB-SIFT For the RGB-SIFT, the SIFT feature is com-
puted for each RGB channel independertly. Due to the
normalizations performed within SIFT, it is equalto trans-
formed color SIFT [44]. The feature is scale-irvariant, shift-
invariant, and invariant to light color changesand shift.

Fast Dense SIFT/SURF  We speed up the calculation of
denselysampled SIFT [23] and SURF [2] in two ways, de-
scribed in detail in [42]. First of all we obsene that both
descriptors are spatial. Both are constructed of 4 4 sub-
regions which are in turn described by the summation of
pixel-wise responsesover an area. For SIFT the pixel-wise
responsesare oriented gradient responses,for SURF these
are Haar-wavelet responses. By reusing subregionsin de-
scriptor creation, we obtain a speed-improvemert of a factor
16. To enablethis for SIFT we have to make a slight ad-
justment by removing the GaussianWeighting around the
origin. Experiments showed that this doesnot in uence the
nal classication accuracy For the secondspeedimprove-
ment we deviseda fast way to do summations of pixel-wise
responsesover a subregion. Instead of a nestedfor-loop, we
do the summationsover a subregionusing two matrix multi-
plications [42]. The useof existing, highly optimized matrix
multiplication libraries gives us a speed-improvemert of a
factor 2 over a naive C++ implementation.

We compute the SIFT [23] and ColorSIFT [44] features
around saliert points obtained from the Harris-Laplace de-
tector and densesampling. In addition, we compute SURF
[2] features around fast densesampled points [42]. For all
visual featureswe employ a spatial pyramid of 1x1, 2x2, and
1x3 regions.
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Figure 5: Generalschemefor transforming visual featuresinto a
codebook, wherewe distinguishbetweencodebook construction us-
ing clustering and soft codeword assignment. We combine various
codeword frequencydistributions into a kernel library.

2.3 Codebook Transform

To avoid using all visual featuresin an image, while incor-
porating translation invariance and a robustnessto noise,
we follow the well known codebook approad, seee.g.,
[17,20,30,45,47]. First, we assign visual features to dis-
crete codewords prede ned in a codebook. Then, we use
the frequency distribution of the codewords as a compact
feature vector represerting an imageframe. By using a vec-
torized GPU implementation [43], our codebook transform
processis an order of magnitude faster for the most ex-
pensive feature comparedto the standard implementation.
Two important variablesin the codebook represertation are
codetnok construction and codewod assignment Basedon
last year's experiments we employ codebook construction
using k-meansclustering in combination with soft codeword
assignmen and a maximum of 4,096 codewords, following
the schemein Figure 5.

Soft-assignment Given a codebook of codewords, ob-
tained from clustering, the traditional codebook approac
describesead feature by the singlebestrepresertativ e code-
word in the codebook, i.e.,hard-assignmen. Howewer, in a
recern paper [47], we show that the traditional codebook ap-
proach may be improved by using soft-assignmenm through
kernel codebooks. A kernel codebook usesa kernel function
to smooth the hard-assignmen of image featuresto code-
words. Out of the various forms of kernel-cadebooks, we
selectedcodeword uncertainty basedon its empirical perfor-
mance [47].

Kernel library Each of the possible sampling methods
from Section 2.1 coupled with ead visual feature extrac-
tion method from Section 2.2, a clustering method, and
an assignmen approad results in a separate visual code-
book. An exampleis a codebook basedon densesampling
of rgSIFT features in combination with k-means cluster-
ing and soft-assignmemn. We collect all possible codebook
combinations in a (visual) kernel library. By using a GPU
implementation [43], this kernel library can be computed
e cien tly. Naturally, the codebooks can be combined us-



ing various con gurations. Depending on the kernel-based
learning scheme used, we simply employ equal weights in
our experiments or learn the optimal weight using cross-
validation.

2.4 Audio Concept Detection

The work on extracting audio-related conceptsfrom the au-
diovisual signalwasdoneby INESC-ID, emphasizingin par-
ticular audio segmemation and audio evert detection meth-
ods [3,28,40].

Audio segmentation The audio segmemation module in-
cludes six separate componerts: one for Acoustic Change
Detection, four componerts for classi cation (Speech/Non-
speech, Background, Genderand Speaker Identi ¢ ation) and
one for Speaker Clustering. These componerts are mostly
model-based, making extensive use of feed-forward fully
connected Multi-La yer Perceptronstrained with the badk-
propagation algorithm. All the classi ers share a similar
architecture: a Multi-La yer Perceptron with 9 input con-
text frames of 26 coe cien ts (12th order Perceptual Lin-
ear Prediction plus energy and deltas), two hidden layers
with 250 sigmoidal units ead and the appropriate number
of softmax output units (one for ead class), which can be
viewed as giving a probabilistic estimate of the input frame
belongingto that class. The Speaker Clustering componert
tries to group all segmens uttered by the same spealer.
The rst frames of a new segmem are compared with all
the samegender clusters found so far. A new speed seg-
ment is merged with the cluster with the lowest distance,
provided it falls below a prede ned threshold. The dis-
tance measurefor merging clustersis a modi ed version of
the Bayesian Information Criterion. The 4 audio concepts
female-voie, child-voice, music, and dialogue could poten-
tially be used for detecting the TRECVID video concepts
Infant, Classioom, Female-close-up Two-People People-
Dancing, Person-Playing-Music-Instrument, and Singing.

Audio event detection The audio event detection mod-
ule currently includes more than 70 one-against-allseman-
tic concept classi ers. For eah audio evert, world and
concept exampleswere chosenfrom a corpus of sound ef-
fects, in order to train models, using a radial basis func-
tion support vector machine classi er. Audio featureswere
retrieved using 500 ms window, with 50% overlap: mel-
frequencycepstral coe cien ts and derivativ es, zero crossing
rate, brightness, and bandwidth. The latter are, respec-
tively, the rst and secondorder statistics of the spectro-
gram, and they roughly measurethe tim bre quality. The F-
measureresults on a separatetest corpus of isolated sound
e ects weregenerally very good (above 0.8), but the results
in real life TRECVID data show the degradation that can
be expected from the fact that audio events almost never
occur separately being corrupted by music, speedt, badck-
ground noiseand/or other audio everts. More sophisticated

support vector machine detectors have been built, using
new features, di erent window sizes,di erent ways of incor-
porating context, and dimensionality reduction techniques.
The time constraints of this ewaluation campaign, how-
ever, motivated the use of the described baselineapproac.
The list of 16 audio evert adopted in TRECVID includes:
Child-laughter, Baby-crying, Airplane-propeller, Airplane-
jet, Sirens Trac-noise , Car-engine, Bus-engine Dog-
barking, Telephone-digita] Telephone-analg, Door-open-
close Applause Bite-eat, Water and Wind.

2.5 Kernel-based Learning

Learning robust conceptdetectorsfrom multimedia features
is typically achieved by kernel-basedearning methods. Sim-
ilar to previousyears,werely predominantly on the support
vector machine framework [48] for supervised learning of
semartic concepts. Here we usethe LIBSVM implementa-
tion [7] with probabilistic output [21,27]. In order to handle
imbalancein the number of positive versusnegative train-
ing examples,we x the weights of the positive and negative
classby estimation from the classpriors on training data.
While the radial basiskernel function usually performs bet-
ter than other kernels, it was recertly showvn by Zhang et
al. [61] that in a codebook-approac to concept detection
the earth movers distance [29] and 2 kernel are to be pre-
ferred. In general, we obtain good parameter settings for a
support vector machine, by using an iterativ e seard on both
C and kernel function K () on crossvalidation data [46].
In addition to the support vector machine framework, we
also study the suitabilit y of two novel multi-k ernel learning
methods for conceptdetection: Kernel Discriminant Analy-
sis using Spectral Regression and Non-Sparse Multiple Ker-
nel Fisher Discriminant Analysis.

Multi-Kernel: SR-KDA Linear Discriminant Analy-

sis [11], which is one of the most widely used statistical

methods, has been proven successfulin many classi cation

problems. Recernly, Spectral Regressioncombined with

Kernel Discriminant Analysis (SR-KDA) introducedby Cai

et al [5] hasbeensuccessfuin many classi cation tasks such
as multi-class face, text and spoken letter recognition. The
method combinesthe spectral graph analysisand regression
for an e cien t large matrix decomposition in Kernel Dis-
criminant Analysis. It hasbeendemonstratedin [5] that it

can achieve an order of magnitude speedup over the eigen-
decomposition while producing smaller error rate compared
to state-of-the-art classiers. In [38], we have showvn the
e ectivenessof SR-KDA for large scale concept detection
problem. In addition to superior classi cation results when
compared to existing approades, it can provide an order
of magnitude speed-up over support vector machine. The
main computationally intensive operation is Cholesky de-
composition, which is actually independert of the number
of labels. For more details pleaserefer to [38].
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Figure 6: Generalschemefor kernel-basedlearning with support
vecta machinesand two novel multi-kernellearning methods, using
episale-constrainedcross-validationfor parametersselection.

Multi-Kernel: MK-FD A Kernel Fisher discriminant anal-
ysis hasprovento be a very successfuktlassi cation method
in various applications. In many real-world problems, mul-
tiple kernelscapturing di erent \views" of the problem are
available. In such a situation, one naturally wants to use
an \optimal® combination of the kernels. In [50], the au-
thors proposedmultiple kernel Fisher discriminant analysis
(MK-FD A), wherethe keyideais to learn the optimal linear
combination of kernelsby maximizing the ratio of the pro-
jected between-classand within-class scatters with respect
to the kernel weights. In [50], the kernel weights are reg-
ularized with an “; norm, which enforcessparsity but may
lead to a loss of information. To remedy this, we propose
to usean ", norm regularization instead. We formulate ",
MK-FD A as a semi-in nite program, which can be solved
e cien tly. Experiments show that "5 regularization tendsto
produce non-sparsesolutions. As a result, lessinformation
is lost during the kernel learning process,and the perfor-
manceis improved over “; MK-FD A aswell asthe uniform
weighting scheme. For more details on non-sparseMK-FD A
pleaserefer to [49].

Episode-constrained cross-validation From all parame-
ters g we select the combination that yields the best av-
erage precision performance, yielding q. We measure
performance of all parameter combinations and select the
combination that yields the best performance. We use a
3-fold cross validation to prevent over-tting of parame-
ters. Rather than using regular cross-walidation for sup-
port vector machine parameter optimization, we employ an
episale-mnstrained cross-\alidation method, asthis method
is known to yield a lessbiased estimate of classi er perfor-
mance [46].

The result of the parameter seard over q is the improved
model p(! jjxi; q ), contracted to p (! jxi), which we useto
fuse and to rank concept detection results.

2.6 Submitted Concept Detection Results

We investigated the contribution of eadh component dis-
cussedin Sections 2.1{2.5, emphasizing in particular the
role of audio, multi-k ernel learning, and scalability by pro-
cessing1,000,000i-frames. In our experimental setup we
usedthe TRECVID 2007developmert setasa training set,
and the TRECVID 2007 test set as a validation set. The
ground truth usedfor learning and evaluation are a combi-
nation of the common annotation e ort [1] and the ground
truth provided by ICT-CAS [39]. An overview of our sub-
mitted concept detection runs is depicted in Figure 7, and
detailed next.

Run: Joe The Joerun is our single key frame baseline. It
appliesthe standard sequettial forward selectionfeature se-
lection method on all (visual) kernellibraries computed over
key frames only. It obtained a meaninfAP of 0:175. This
run tends to lag behind our other (multi-frame) runs, espe-
cially for dynamic conceptssudc as airplane ying , people
dancing, person riding bicycle person playing saccer, and
person eating.

Run: William The William run is a cooperation between
the University of Amsterdam and the University of Surrey.

In this run, ead (visual) kernel is trained using SR-KDA

with regularization parameter [38]which is tuned for ead

concept using the validation set. Further, instead of using
equal weights for ead classi er during fusion, weights for

individual kernelsare learnt for eadh conceptusingthe clas-
si cation accuracyi.e. averageprecision on the validation

set. The weighted output from ead classi er is then com-
bined using the SUM rule [18]. This run has achieved a
mean infAP of 0:190. For someconcepts(cityscape, people
dancing, boat/ship), results are comparableto our top run

methods despite the fact that only 1 key frame is processed
for every shot in this run while multi-frames per shot are
processedn our top runs.

Run: Jack The Jack run is a cooperation between the
University of Amsterdam, INESC-ID, and the University
of Surrey. In addition to the visual kernels, we also gener-
ated an audio kernelusing INESC's audio conceptdetectors.
More speci cally, the 20 output scoresof the 20 audio con-
cept detectors were usedas 20 features,and an RBF kernel
was build from these features. This audio kernel together
with the visual kernels were then used as input to Non-
SparseMultiple Kernel Fisher Discriminant Analysis (MK-
FDA) [49], where the optimal kernel weights were learned
for eadh semartic concept. Experiments on the validation
set shaw that by introducing the audio kernel to the kernel
set, the meanaverageprecisionis improved by 0.01. On the
TRECVID 2009test set this run obtains a mean infAP of
0:193. The conceptsthat bene t most from the audio kernel
are: person playing musical instrument, female human face
closeup infant, singing, and airplane ying .
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Figure 7: Compaison of MediaMill video conceptdetection experimentswith other conceptdetection approachesin the TRECVID 2009

High-level Feature Task benchmak.

Run: Averell The Averell run is basedon a (visual) kernel
library basedon SIFT, OpponenSIFT, C-SIFT, and RGB-
SIFT only, which have beenapplied spatio-temporally with
up to 5 additional i-frames per shot in combination with
a M AX rule combination. This run achieved a mean in-
fAP of 0:219,with the overall highest infAP for 3 concepts:
doorway, person playing saccer, and person eating.

Run: Rantanplan The Rantanplan run selectsfrom all
the (visual) kernel libraries, all of which have beenapplied
spatio-temporally with up to 10 additional i-frames per shot
in combination with AV G and M AX rule combination, the
best performer per concept. This run achieved a mean in-
fAP of 0:224,with the overall highestinfAP for 4 concepts:
trac intersection, airplane ying , demonstation/pr otest,
and female human face closeup

Run: Luke The Luke run extends upon the Rantanplan
run, by applying the standard sequetial forward selection
feature selectionmethod on all (visual) kernellibraries com-
puted over 1,000,000i-frames. This run achieved the over-
all highest mean infAP in the TRECVID2009 bendcmark
(0:228), with the overall highestinfAP for 4 concepts: class-
room, nighttime, hand, and female human face closeup

2.7 64 Robust Concept Detectors

Similar to our TRECVID 2008 participation, we again aim
for a small but robust lexicon of concept detectors this
year. To that end we have employed our Averell run
setting on the concept sets of TRECVID 2008 (20 con-
cepts), TRECVID2007 (36 concepts) and an additional

black/white detector. All 64 detectors have been donated
to the TRECVID community? and are included in the 2009
MediaMill semaric video seard enginefor the retrieval ex-
periments.

3 Automatic Video Retrieval

The MediaMill team continued its eort on automatic
seard, this year submitting 8 automatic runs. The overall
architecture of the seard systemwasbasedon 3 fundamen-
tal seard types| transcript-basedretrieval, detector-based
retrieval, and feature-basedretrieval | ead of which was
submitted individually as a run. In addition we submit-
ted 5 combination runs, consisting of query-dependert and
guery-independert approadcesto video automatic seard.

3.1 Baseline Retrieval Approaches

Our baselinescorrespond to the three information sources
of: transcripts, detectors, and low-level features. These are
implemented as follows:

Pippin:  Transcript-based seach Our transcript-based
seart approach is similar to that of last year, incorpo-
rating Dutch automatic speed recognition transcripts and
English automatic machine translation transcripts [6]. This
year both the University of Twente [13] and LIMSI [9] do-
nated speed recognition transcripts. We evaluated both
for retrieval using the 2007 topics, and found that overall
retrieval performance could be improved by combining the

1Available from: http://trecvid.nist.gov /tr ecvi d.d ata. html



text of both transcripts. This was further conrmed for
the 2009 topics with three additional (unsubmitted) runs
that we performed using this year's topics. A run using
only University of Twente transcripts gainedan MAP score
of 0.007, a run using only LIMSI transcripts gained an
MAP scoreof 0.009,and a run using combined transcripts
gainedan MAP score0.010. We combined the text of both
transcripts together with the machine translation for this
year's ertry, which resulted in a decreased nal score of
0.009. At retrieval time, ead topic statemernt was auto-
matically translated into Dutch using the online translation
tool http://translate .google .c om allowing a seard on
the machine-translated transcripts with the original (En-
glish) topic text, and a seard on transcripts from auto-
matic speed recognition using the translated Dutch topic
text. The two resulting ranked lists were then combined
to form a single list of transcript-based seard results. To
compensatefor the temporal mismatch betweenthe audio
and the visual channels, we usedour temporal redundancy
approadc [14]. To summarizethis approad, the transcript
of ead shot is expandedwith the transcripts from tempo-
rally adjacert shots, where the words of the transcripts are
weighted according to their distance from the certral shot.

Sam: Detector-based seach The detector-basedseard,
using our lexicon of 64 robust concept detectors, consisted
of two main steps: 1) conceptselectionand 2) detector com-
bination. We evaluated a number of concept selection ap-
proaches using a benchmark set of query-to-concept map-
pings, adapted from [15] to the new lexicon. The nal

concept selection method usedfor automatic seard was to
average the score for a concept detector on the provided
topic video examples,and selectconceptsthat scoredover
a threshold. In addition, any detectors with high informa-
tion content, that were also WordNet synonyms of terms
in the topic text, were also selected. As for the combina-
tion of multiple selectedconceptsfor a topic, this was done
by simply taking the product of the raw selecteddetector
scoresfor eat shot as its retrieval score. No extra nor-
malization or parametrization was done, nor were concepts
weighted according to their computed scorefor the exam-
ples. Rather, we usedthe triangulation of conceptdetector
scoresto provide information on the relevance of a shot to
a query.

Merry: Feature-based seach As we did last year, we
treat feature-basedseart asan on-the-y conceptlearning
problem, with the provided topic video examplesas positive
examples, and randomly selectedshots from the test col-
lection as pseudo-negatie examples. Spatio-temporal sam-
pling of interest regions, visual feature extraction, codebook
transform, and kernel-basedearning weredoneasdescribed
in Section 2. The resulting model was applied to the shots
in the test collection, shots were ranked according to the
probabilistic output scoreof the support vector machine.

3.2 Query-(In)dep endent Multimo dal Fusion

The nal step in our retrieval pipeline is multimo dal fu-
sion. Our aim herewasto (1) comparequery-dependert vs
guery-independert methods, and (2) investigate the use of
the learning to rank framework [22] for video retrieval. In
all casesweights and/or models were developed using the
TRECVID 2007 and 2008 topics for training. Learning to
rank was done accordingto the SVM-Rank implementation
for learning to rank [16].

Gimli: Query-independent fusion Linear combination of
the three baselineapproadcesusing weighted combsum fu-
sion.

Legolas: Query-independent learning to rank Learning
to rank-basedcombination of the three baselineapproacdes.

Aragorn: Query-class based fusion Query-class depen-
dent linear combination of the three baselineapproachesus-
ing weighted combsum fusion. We utilize the query classes
and classi cation methodology employed by Mei et al. [25].

Gandalf: Predictive reranking Similarly to last year, pre-
dict which baselineapproacd will givethe bestperformance,
using various query and result-basedfeaturesfor prediction.
Rerank the results of the predicted bestbaselinewith results
from the other two baselines.

Frodo: Query-dependent Learning to Rank Learning to
rank-based combination of all 6 aforemenioned automatic
seard runs.

3.2.1 Automatic Seach Results

Once again this year, the transcript baselinehad the lowest
overall MAP of all runs with a score of 0.009. At 0.068,
detector-basedseard is the best performing baseline,while
feature-basedseart also does relatively well with a score
0.053. Of the combination approacdes, query-dependert
learning to rank gives the best retrieval performance of
0.089. Surprisingly, query-independert learning to rank
gives the lowest performance over all combination strate-
gies. In these experimernts, the learning to rank-method is
more e ectiv e when given both query-dependert and query-
independert results asinput features.

Figure 8 provides a topic-level summary of the perfor-
manceof the MediaMill automatic seard runs. We seethat
transcript-based seard had consisterlly low performance,
though it did achieve a high AP scorerelative to other runs
for an airplane or helicopter on the ground, seen from out-
side Feature-basedseard gave higher performance, doing
well for visually distinctive scenessuch as a building en-
trance and printed, typed, or handwritten text, | ling more
than half of the frame area. Detector-based seard per-
formed best for topics where one or more closely related
detectors where available, for instance something burning



a road taken from a moving vehicle through the front windowp&#

a crowd of people, outdoors, filling more than half of the frame area p>

a view of one or more tall buildings (more than 4 stories) and the top story visiblefp
a person talking on a telephone#

a closeup of a hand, writing, drawing, coloring, or painting$#

exactly two people sitting at a tablei®

one or more people, each walking up one or more steps§®

one or more dogs, walking, running, or jumpingj

a person talking behind a microphoned

a building entrancelp

Search Topic

a person playing a pian

a street scene at nightl>
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something burning with flames visible {®&

one or more people, each at a table or desk with a computer visible
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one or more people, each sitting in a chair, talkin
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a person pointing x4
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Figure 8: Topic-level compaison of MediaMill automatic video seach experiments with other automatic seach approachesin the

TRECVID 2009 benchmak.

with ames visible, where the explosion/r e detector was
selected,and street seneat night wherethe street and night
detectors were selectedfor seardr. Sometimesresults were
disappointing: performance for the query for one or more
dags, walking, running, or jumping, wherethe dog detectors
was selected,was seerely degradedby inclusion of scores
from the people walking detector.

The performanceof the query-dependert learning to rank
run is 0.089. If we wereto selectthe best performing of the
three baselinesfor ead topic, the performancewould also
be 0.089. This indicates that the fusion approach is capable
of performing at least as well as a \b est of" approac, at
leaston an overall level. Performanceover individual topics
varies, a large boost in performanceis obtained for topics
where more than one baselinedoeswell, for examplefor a a
building entrance AP is increasedby 0.098, and for one or
more people, each at a table or deskwith a computer visible,
performance more than doubles compared to the highest
performing baselinerun. Conversely when a single baseline
outperforms the others to a great degree, fusion tends to

reduce performanceas comparedto the best baseline. This
is the casefor examplewith the topics a street seeneat night
and somethingburning with ames visible.

4 Interactive Video Retrieval

The performanceof interactiv e video seart enginesdepends
on many factors, such asthe chosenquery method, the used
browsing interface with its implied interaction scheme,and
the level of expertise of the user. Moreover, when seart
topics are generic and diverse,it is hard to predict which
combination of factors yields optimal performance. There-
fore, current video seard engineshave traditionally o ered
multiple query methods in an integrated browse environ-
ment. This allows the userto choosewhat is needed. How-
ever, while this does o er the user complete cortrol over
which strategy to usefor which topic, it alsoallows the user
to inadvertently selecta sub-optimal strategy.



Figure 9: Screenshotof the MediaMill semanticvideo seach enginewith its query interface (left), its ForkBrowser [8] (right), and its

CrossBravser[37] (inset).
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2009 benchmak.

4.1 Thread-Based Browsing

The basisfor our TRECVID 2009 experimerts is the Me-
diaMill Semaric Video Seard Engine, seeFigure 9. The
basic building block behind the browsing interface is the
thread; a linked sequenceof shotsin a speci ed order, based

Inferred Average Precision

video archive in seweral ways. For example, time threads
span the temporal similarity between shots, visual threads
span the visual similarity between shots, a query thread
spans the similarity between a shot and a user-imposed
query, and history threads span the navigation path the

user follows.

upon an aspect of their cortent [8]. Thesethreads spanthe



The MediaMill Semaric Video Seart Engine allows user
to choosebetweentwo modesfor thread visualization. The
rst visualization, the CrossBrowvsershowsthe query thread
and the time thread in a crossformation. This visualiza-
tion is most e cien t for topics where a single conceptquery
is su cien t for solving a topic [33,37]. The secondvisual-
ization, the ForkBrowser, provides the user with two extra
diagonal threads, and a history thread. The ForkBrowseris
more e cien t in handling complex querieswhere no direct
mapping betweenavailable conceptdetectorsis possible[8].

4.2 Guiding The User to Results

Our TRECVID Interactive Retrieval experiments focus on
helping usersto determine the utilit y of a given retrieval
strategy, and on guiding them to a correct set of results. To
this end we investigate the bene t of two strategies within
the MediaMill Semaric Video Seart Engine.

To help users determine the utilit y of a given retrieval
strategy we intro duce Activ e Zooming. This aids usersboth
by helping determine that a subsetof visible results is not
relevant, and by helping to nd a starting point within the
selectedresults. Active Zooming enablesthe userto quickly
and seamlesslyvisualize a large set of results from a single
thread at once. This allows usersto make blink-of-an-eye
decisionsabout the contents of a single thread, or, in the
caseof many relevant results, to quickly selectlarge batches
of relevant results at once. The user is then able to ei-
ther contin ue browsing the thread, or go back to any other
thread.

To help guide usersto correct results we introduce a Rel-
evance Feedbak strategy basedon passive sampling of user
browsing behavior in order to guide usersto more relevant
results. For this, the systemcontin uously monitors userbe-
havior and usesthis information on-demandto generatea
new set of results. It doesso by training a support vector
machine model basedon positive examplesobtained from
the user, and negative examplesobtained by passive moni-
toring. By using a pre-computedkernel matrix of inter-shot
distancesthis can be doneinteractively. The endresult is a
reranking of the entire collection, which is then available as
a thread for visualization.

4.3

We submitted two runs for interactive seard. The Sauron
run was performed by a single expert user. The user was
instructed to use the ForkBrowser with Gabor and Wic-
cest [45] similarity threads. The user was allowed to use
Activ e Zooming and Relevance Feedbak techniques on de-
mand. The Saruman run was performed by another sin-
gle expert user. The user was instructed to usethe Cross-
Browsertogether with Activ e Zooming and RelevanceFeed-
badk. We provide a preliminary analysisof the logging data
for both runs.

In Figure 10 we show a per-topic overview of interactive
video retrieval results. The log-analysisindicates that the

Interactive Search Results

usersemployed a variety of strategiesto retrieveresults. We
highlight a few typical cases.When relevant conceptdetec-
tors are available for a topic, these are taken as the entry
point for seard by both users. For example, the usersse-
lected the Hand detector for the topic a closeupof a hand,
writing, drawing, coloring, or painting. We found the capa-
bility to analyze and view multiple frames from individual
shots to be a signi cant benet. For example, the results
for one or more dogs... were largely found by selecting the
opening credits of a single television program, in which a
dog can be seenrunning. This was however not apparen
in the key frames of these shots. For other topics, sudc as
train in motion or camera zaoming in on a face, we found
that showing motion enabledthe usersto correctly answer
the topics. One user further increasedthe result for the lat-
ter topic by a creative use of Active Zooming: the zoom-in
motion wasvisually easily distinguishable which allowedthe
userto selectrelevant shotsrapidly. Furthermore we found
that almost all topics bene ted from Relevance Feedbag,
though the speci c per-topic bene ts are still being investi-
gated. In most caseshe usersalsochoseto auto-extend the
set of interactively selectedresults with relevance feedbadk
results.

Overall our approachesare the two best performing meth-
ods in the interactive video seard task (Saruman: 0.246;
Sauron: 0.241), yielding the highestinfAP scoresfor 18 out
of 24 topics. This indicates that our thread-basedbrowsing
approach combined with robust conceptdetectors and rele-
vancefeedbad basedon passiwe obsenation yields excellen
seard results.

5 LessonslLearned

TRECVID corntinuesto be a rewarding experiencein gain-
ing insight in the dicult problem of concept-basedvideo
retrieval [31]. The 2009 edition has again beena very suc-
cessfulparticipation for the MediaMill team resulting in top
ranking for both concept detection and interactive seard,
seeFigure 11 for an overview. To conclude this paper we
highlight our most important lessonslearned:

By reusing subrmegions in the descriptors, we obtain a
speed-improvementof a factor 16 [42];

Concept detection using the GPU is power-e cient
[43];

Multi-mo dal concept detection using multi-kernel super-
vised learning seems promising but more experiments
are needed to be conclusive;

Multi-fr ame processingis a true performance booster,
indicating the time has arrived to move on to video
analysis;

Query-dependent learning to rank is a solid choice for
automatic search;
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Figure 11: Overviewof the 2009 TRECVID benchmak tasksin which MediaMill wasthe best overall performer. Top: conceptdetection
and bottom: interactive seach, all runs ranked accading to mean inferred averageprecision.

Thread-basal Fork- and CrossBrowsing using robust
concept detectors and on-the-y learning yields exel-
lent search results;
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