
Noname manuscript No.
(will be inserted by the editor)

Neural Information Retrieval: At the End of the Early Years

Kezban Dilek Onal? · Ye Zhang? · Ismail
Sengor Altingovde · Md Mustafizur Rahman ·
Pinar Karagoz · Alex Braylan · Brandon
Dang · Heng-Lu Chang · Henna Kim ·
Quinten McNamara · Aaron Angert · Edward
Banner · Vivek Khetan · Tyler McDonnell ·
An Thanh Nguyen · Dan Xu · Byron C.
Wallace · Maarten de Rijke† · Matthew Lease†

Received: date / Accepted: date

Abstract A recent “third wave” of neural network (NN) approaches now delivers
state-of-the-art performance in many machine learning tasks, spanning speech recog-
nition, computer vision, and natural language processing. Because these modern NNs

I.S. Altingovde is supported by Turkish Academy of Sciences Distinguished Young Scientist Award
(TÜBA-GEBİP 2016). P. Karagoz is partially funded by TUBITAK grant no. 112E275. M. de Rijke was
supported by Ahold Delhaize, Amsterdam Data Science, the Bloomberg Research Grant program, the
Dutch national program COMMIT, Elsevier, the European Community’s Seventh Framework Programme
(FP7/2007-2013) under grant agreement nr 312827 (VOX-Pol), the Microsoft Research Ph.D. program, the
Netherlands Institute for Sound and Vision, the Netherlands Organisation for Scientific Research (NWO)
under project nrs 612.001.116, HOR-11-10, CI-14-25, 652.002.001, 612.001.551, 652.001.003, and Yan-
dex. All content represents the opinion of the authors, which is not necessarily shared or endorsed by their
respective employers and/or sponsors.

? † These authors contributed equally.

K.D. Onal · I.S. Altingovde · P. Karagoz
Middle East Technical University
E-mail: dilek@ceng.metu.edu.tr, altingovde@ceng.metu.edu.tr, karagoz@ceng.metu.edu.tr

K.D. Onal ·M. de Rijke
University of Amsterdam
E-mail: k.d.onal@uva.nl, derijke@uva.nl

Y. Zhang · M.M. Rahman · A. Braylan · B. Dang · H. Chang · H. Kim · Q. McNamara · V. Khetan · T.
McDonnell · A.T. Nguyen · D. Xu ·M. Lease
University of Texas at Austin
E-mail: yezhang@utexas.edu, nahid@utexas.edu, braylan@cs.utexas.edu, budang@utexas.edu,
hengluchang@utexas.edu, henna@utexas.edu, quinten.mcnamara@utexas.edu, vivek.khetan@utexas.edu,
tmcdonnell@utexas.edu, atn@cs.utexas.edu, xudan0812@utexas.edu, ml@utexas.edu

A. Angert
IBM
E-mail: aarondangert@gmail.com

E. Banner · B.C. Wallace
College of Computer and Information Science, Northeastern University
E-mail: ebanner@ccs.neu.edu, byron@ccs.neu.edu

2 Kezban Dilek Onal et al.

often comprise multiple interconnected layers, work in this area is often referred to
as deep learning. Recent years have witnessed an explosive growth of research into
NN-based approaches to information retrieval (IR). A significant body of work has
now been created. In this paper, we survey the current landscape of Neural IR re-
search, paying special attention to the use of learned distributed representations of
textual units. We highlight the successes of neural IR thus far, catalog obstacles to its
wider adoption, and suggest potentially promising directions for future research.

Keywords Deep learning · distributed representation · neural network · recurrent
neural network · search engine · word embedding · semantic matching · semantic
compositionality

1 Introduction

We are in the midst of a tremendous resurgence of interest and renaissance in research
on artificial neural network (NN) models for machine learning, now commonly re-
ferred to as deep learning.1 While many valuable introductory readings, tutorials, and
surveys already exist for deep learning at large, we are not familiar with any exist-
ing literature review surveying NN approaches to Information Retrieval (IR). Given
the great recent rise of interest in such Neural IR from academic and industrial re-
searchers [67, 111] and practitioners [135, 154] alike, and given the significant body
of work that has been created in just a few years, we believe that such a literature
review is now timely. IR researchers interested in getting started with Neural IR cur-
rently must identify and compile many scattered works. Unifying these into a coher-
ent resource provides a single point of reference for those interested in learning about
these emerging approaches, as well as provide a valuable reference compendium for
more experienced Neural IR researchers.

To address this need, this literature review surveys recent work in Neural IR. Our
survey is intended for IR researchers (e.g., typical readers of this journal) already fa-
miliar with fundamental IR concepts and so requiring few definitions or explanations
of these. Those less familiar with IR may wish to consult existing reference materi-
als [47, 129] for unfamiliar terms or concepts. However, we anticipate many readers
will have relatively less familiarity and experience with NNs and deep learning. Con-
sequently, we point exemplary introductory resources on deep learning and briefly
introduce key terms, definitions, and concepts in Section 3.

In terms of scope, the survey is limited to textual IR. For NN approaches to
content-based image retrieval, see [190]. Similarly, we exclude work on NN ap-
proaches to acoustic or multi-modal IR, such as mixing text with imagery (see [125,
126]). We also intentionally focus on the current “third wave” revival of NN research,
excluding earlier work.

For the purposes of this survey, the early years of neural IR refers to the period
up to the end of 2016. Relevant research from this period has mainly been focused
on the long standing vocabulary mismatch problem in textual IR: the phenomenon

1 While not all NNs are ‘deep’ and not all ‘deep’ models are neural, the terms are often conflated in
practice.

Neural Information Retrieval: At the End of the Early Years 3

that the vocabulary of the searcher and the vocabulary used in relevant documents
may be different. This focus was motivated by the success of neural network models
in learning distributed representations for words [14, 17, 138, 161] and larger textual
units [84, 103]. A distributed representation for a textual unit is a dense real-valued
vector that somehow encodes the semantics of the textual unit [132]. Distributed rep-
resentations hold the promise of aiding semantic matching: by mapping words and
other textual units to their representations, semantic matches can be computed in
the representation space [112]. Indeed, recent improvements in obtaining distributed
representations using neural models have quickly been used for semantic matching
of textual units in IR tasks.

The problem of mapping words to a representation that can capture their mean-
ings is referred as distributional semantics and has been studied for a very long time;
see [186] for an overview. Neural language models, which may be viewed as a par-
ticular flavor of distributional semantic models, so-called context-predicting distribu-
tional semantic models, have been shown to outperform so-called context-counting
models such as Hyperspace Analog to Language (HAL) [122], Latent Semantic Anal-
ysis (LSA) [53], on word analogy and semantic relatedness tasks [14]. Moreover,
Levy et al [108] improve context-counting models by adopting lessons from context-
predicting models. Bengio et al [17] seem to have been the first to propose a neu-
ral language model; they introduce the idea of simultaneously learning a language
model that predicts a word given its context and its representation, a so-called word
embedding. This idea has since been adopted by many follow-up studies. The most
well-known and most widely used context-predicting models, word2vec [138] and
Global Vectors (GloVe) [161], have been used extensively in recent work on web
search. The success of neural word embeddings has also given rise to work on com-
puting context-predicting representations of larger textual units, including paragraphs
and documents [84].

We review the literature in the area and consider both word representations and
representations of larger textual units, such as sentences and paragraphs. We survey
the use of neural language models and word embeddings, and detail applications of
so-called neural semantic compositionality models that determine semantic represen-
tations of larger text units from smaller ones, and we present novel neural semantic
compositionality models designed specifically for IR tasks. In addition to surveying
relevant literature, we provide the reader with a foundation on neural language mod-
els and with pointers to relevant resources that those who are new to the area should
appreciate.

Regarding the set of reviewed textual IR tasks, we largely follow the traditional
divide between IR and Natural language processing (NLP), including search-related
IR research and excluding syntactic and semantic NLP work. However, this division
is perhaps most difficult to enforce in regard to two different classes of IR tasks.
First is question answering (QA) and community question answering (CQA) tasks,
which perhaps represent the greatest cross-over between the NLP and IR fields (e.g.,
see Dumais et al [59]). Recent years have shown that QA research is often more
focused on semantic understanding, reasoning and generative models rather than on
search over large collections. In this survey, we review QA work that is focused on
retrieval of textual answers. For readers interested in further reading about deep QA,

4 Kezban Dilek Onal et al.

see [23, 67, 70, 100]. Secondly, textual similarity and document representations are
crucial to many different applications such as document clustering and classification.
In this survey, we review neural models for textual similarity only if the model is
evaluated for retrieval of similar textual units. Limiting to Similar Item Retrieval, we
exclude works on neural models for general purpose textual similarity such as Hill
et al [84], Kenter and de Rijke [95].

Finally, regarding nomenclature, our use of Neural IR, referring to machine learn-
ing research on artificial NNs and deep learning, should not be confused with cogni-
tive science research studying actual neural representations of relevance in the human
brain (see [148]). In addition, note that the modern appellation of deep learning for
the current “third wave” of NN research owes to these approaches using a large num-
ber of hidden layers in their NN architectures. For this literature review, we have cho-
sen the term neural (rather than deep) because: (i) most current work on textual NNs
in NLP and IR is often actually quite shallow in the number of layers used (typically
only a few hidden layers and often only one, though some notable recent exceptions
exist, such as Conneau et al [46]); (ii) the use of neural more clearly connects the
current wave of deep learning to the long history of NN research; and (iii) our use of
Neural IR is consistent with the naming of this journal’s special issue and the other
articles therein.

The remainder of this literature review is organized as follows. To illustrate the
rough evolution of Neural IR research over time, we begin by providing a concise
history of Neural IR in Section 2. Following this, in Section 3 we present background
and terminology; readers with a background in neural methods can skip over this
section. In Section 4, we detail the dimensions that we use for categorizing the publi-
cations we review. We classified textual IR work using five main classes of tasks. We
review works on Ad-hoc retrieval, QA, Query Tasks, Sponsored Search and Similar
Item Retrieval in Section 5, 6, 7, 8, and 9, respectively. So far, there have been few
publications devoted to neural behavioral models; we cover them in Section 10. In
Section 11 we present lessons and reflections, and we conclude in Section 12. We in-
clude multiple appendices, one with acronyms used in Appendix A, the second with
a list of resources used in reviewed work; we believe this should help newcomers to
the area; see Appendix B.

2 A Brief History of Neural IR

In this section we present a bird’s eye view of key publications in neural IR up to
the end of 2016. Introductory resources on deep learning cited in Section 3.1 (see
LeCun et al [105] and Goodfellow et al [71]) explain how the “third wave” of in-
terest in neural network approaches arose. Key factors include increased availability
of “big data,” more powerful computing resources, and better NN models and pa-
rameter estimation techniques. While early use in language modeling for automatic
speech recognition (ASR) and machine translation (MT) might be loosely related to
language modeling for IR [162], state-of-the-art performance provided by neural lan-
guage models trained on vast amounts of data could not be readily applied to the
more typical sparse data setting of training document-specific language models in

Neural Information Retrieval: At the End of the Early Years 5

IR. Similarly, neural approaches in computer vision to learn higher-level represen-
tations (i.e., visual concepts) from low-level pixels were not readily transferable to
text-based research on words.

In 2009, Salakhutdinov and Hinton [171] published the first “third wave” Neu-
ral IR publications that we are aware of, employing a deep auto-encoder architec-
ture (Section 3.2) for semantic modeling for related document search (Section 9.1.2).
They did not have relevance judgments for evaluation, so instead used document cor-
pora with category labels and assumed relevance if a query and document had match-
ing category labels. Little happened in terms of neural approaches to IR between 2009
and 2013.

In 2013, the Deep Structured Semantic Model (DSSM) [89] was introduced, a
neural model that directly addresses the ad-hoc search task. Work by Clinchant and
Perronnin [42] was the first to aggregate word embeddings for IR. Mikolov and Dean
[136] and Mikolov et al [139] proposed word2vec. And Lu and Li [121] proposed
DeepMatch, a deep matching method used on two datasets: CQA (matching questions
with answers) and a Twitter-like micro-blog task (matching tweets with comments).

In 2014, the first two neural IR papers appeared in ACM SIGIR. Gupta et al
[80] proposed an auto-encoder approach to mixed-script query expansion, consid-
ering transliterated search queries and learning a character-level “topic” joint distri-
bution over features of both scripts. Zhang et al [216] considered the task of local
text reuse, with three annotators labeling whether or not a given passage represents
reuse. New variants of DSSM were proposed. And Sordoni et al [181] investigated a
deep IR approach to query expansion, evaluating ad-hoc search on TREC collections.
Le and Mikolov [103] proposed their Paragraph Vector (PV) method for composing
word embeddings to induce semantic representations over longer textual units (see
Section 11.2.2).

By 2015, work on neural IR had grown beyond what can be concisely described
here. We saw word2vec enter wider adoption in IR research (e.g., [65, 75, 95, 222,
225]), as well as a flourishing of neural IR work appearing at SIGIR [65, 76, 143,
174, 189, 222], spanning ad-hoc search [65, 189, 222, 225], QA sentence selection
and Twitter reranking [95], cross-lingual IR [189], paraphrase detection [95], query
completion [143], query suggestion [182], and sponsored search [75, 76]. In 2015,
we also saw the first workshop on Neural IR.2

In 2016, work on neural IR began to accelerate in terms of the volume of work,
the sophistication of methods, and practical effectiveness (e.g., Guo et al [78]). SIGIR
also featured its first workshop on the subject,3 as well as its first tutorial on the
subject Li and Lu [111]. To provide as current of coverage as possible in this literature
review, we include articles appearing up through ACM ICTIR 2016 and CIKM 2016
conferences.

2 http://research.microsoft.com/en-us/um/beijing/events/
DL-WSDM-2015/

3 https://www.microsoft.com/en-us/research/event/neuir2016/

6 Kezban Dilek Onal et al.

3 Background

We assume that our readers are familiar with basic concepts from IR but possibly
less versed in NN concepts; readers with a background in neural methods can skip
ahead to Section 4. Below, in Section 3.1, we provide pointers to existing introduc-
tory materials that can help the reader get started. In Section 3.2, we present back-
ground material for the NN concepts that are crucial for the rest of the survey. In
Section 3.3, we briefly review key concepts that underly the use of neural models
for textual IR tasks, viz. distributional semantics, semantic compositionality, neural
language models, training procedures for neural language models, word2vec and
GloVe, and paragraph vectors.

3.1 Introductory Tutorials

For general introductions to deep learning, see [7, 54, 71, 105, 172, 210], and Ben-
gio [16]. See Broder et al [27] for a recent panel discussion on deep learning. For
introductions to deep learning approaches to other domains, see [85] for ASR, [70]
for NLP, and [198] for MT. Goldberg [70] covers details on training neural net-
works and a broader set of architectures including feed-forward NN, convolutional
neural network (CNN), recurrent neural network (RNN) and recursive neural net-
work (RecNN). Cho [38] focuses on language modeling and machine translation,
sketches a clear picture of encoder-decoder architectures, recurrent networks and at-
tention modules.

Regarding NN approaches to IR, informative talks and tutorials have been pre-
sented by Gao [67], Li and Lu [111], and Li [109, 110]. Many other useful tutorials
and talks can be found online for general deep learning and specific domains. A va-
riety of resources for deep learning, including links to popular open-source software,
can be found at http://deeplearning.net.

3.2 Background on Neural Networks

3.2.1 Neural networks

The neural models we will typically consider in this survey are feed-forward net-
works, which we refer to as NN for simplicity. A simple example of such an NN
is shown in Figure 1. Input features are extracted, or learned, by NNs using mul-
tiple, stacked fully connected layers. Each layer applies a linear transformation to
the vector output of the last layer (performing an affine transformation). Thus each
layer is associated with a matrix of parameters, to be estimated during learning. This
is followed by element-wise application of a non-linear activation function. In the
case of IR, the output of the entire network is often either a vector representation of
the input or some predicted scores. During training, a loss function is constructed by
contrasting the prediction with the ground truth available for the training data, where
training adjusts network parameters to minimize loss. This is typically performed via
the classic back-propagation algorithm [170]. For further details, see [71].

Neural Information Retrieval: At the End of the Early Years 7

Input
layer

Hidden
layer

Output
layerW12 W23

Fig. 1: Feed-forward fully connected neural network.

3.2.2 Auto-encoder

An auto-encoder NN is an unsupervised model used to learn a representation for data,
typically for the purpose of dimensionality reduction. Unlike typical NNs, an auto-
encoder is trained to reconstruct the input, and the output has the same dimension as
the input. For more details, see [62, 86]. auto-encoder was applied in IR in [171].

3.2.3 Restricted Boltzman Machine (RBM)

An RBM is a stochastic neural network whose binary activations depend on its neigh-
bors and have a probabilistic binary activation function. RBMs are useful for dimen-
sionality reduction, classification, regression, collaborative filtering, feature learning,
topic modeling, etc. The RBM was originally proposed by Smolensky [178] and fur-
ther popularized by Nair and Hinton [149].

3.2.4 Convolutional neural network

In contrast to the densely-connected networks described above, a convolutional neu-
ral network (CNN) [104] defines a set of linear filters (kernels) connecting only spa-
tially local regions of the input, greatly reducing computation. These filters extract lo-
cally occurring patterns. CNNs are typically built following a “convolution+pooling”
architecture, where a pooling layer following convolution further extracts the most
important features while at the same time reducing dimensionality. We show a basic
example of a CNN in Figure 2. CNNs were first established by their strong perfor-
mance on image classification [99], then later adapted to text-related tasks in NLP
and IR [45, 93, 97, 219, 221]. As discussed in Section 11.2.2, Yang et al [205], Guo
et al [79], and Severyn and Moschitti [174] question whether CNN models devel-
oped in computer vision and NLP to exploit spatial and positional information are
equally-well suited to the IR domain.

3.2.5 Recurrent neural network

A recurrent neural network (RNN) [61] models sequential inputs, e.g., sequences of
words in a document. We show a basic example of an RNN in Figure 3. Individual

8 Kezban Dilek Onal et al.

Convolutional layer
(Filters)

Embedding
layer

Text
Sequence

Feature
maps Vector 1-max

pooling

Fig. 2: One-dimensional CNN with only one convolution layer (six filters and six
feature maps), followed by a 1-max-pooling layer.

input units (e.g., words) are typically encoded in vector representations. RNNs usu-

A

...x1 xt

h0

x0

h1 ht

A A

Fig. 3: recurrent neural network (RNN). Here, x is the input, A is the computation
unit shared across time steps, and h is the hidden state vector.

ally read inputs sequentially; one can think of the input order as indexing “time.”
Thus, the first word corresponds to an observation at time 0, the second at time 1,
and so on. The key component of RNNs is a hidden state vector that encodes salient
information extracted from the input read thus far. At each step during traversal (at
each time point t), this state vector is updated as a function of the current state vector
and the input at time t. Thus, each time point is associated with its own unique state
vector, and when the end of a piece of text is reached, the state vector will capture the
context induced by the entire sequence.

A technical problem with fitting the basic RNN architecture just described is
the “vanishing gradient problem” [160] inherent to parameter estimation via back-
propagation “through time.” The trouble is that gradients must flow from later time
steps of the sequence back to earlier bits of the input. This is difficult for long se-

Neural Information Retrieval: At the End of the Early Years 9

quences, as the gradient tends to degrade, or “vanish,” as they are passed backwards
through time. Fortunately, there are two commonly used variants of RNNs that aim
to mitigate this problem (and have proven empirically successful in doing so): LSTM
and GRU.

Long Short Term Memory (LSTM) [87] was the first approach introduced to ad-
dress the vanishing gradient problem. In addition to the hidden state vector, LSTMs
have a memory cell structure, governed by three gates. An input gate is used to control
how much the memory cell will be influenced by the new input; a forget gate dictates
how much previous information in the memory cell will be forgotten; and an output
gate controls how much the memory cell will influence the current hidden state. All
three of these gates depend on the previous hidden state and the current input. For a
more detailed description of LSTM and more LSTM variants, see [73, 77].

Bahdanau et al [10]’s Gated Recurrent Unit (GRU) is a more recent architecture,
similar to the LSTM model but simpler (and thus with fewer parameters). Empiri-
cally, GRUs have been found to perform comparably to LSTMs, despite their com-
parative simplicity [41]. Instead of the memory cell used by LSTMs, an update gate
is used to govern the extent to which the hidden gate will be updated, and a reset
gate is used to control the extent to which the previous hidden state will influence the
current state.

3.2.6 Attention

The notion of attention has lately received a fair amount of interest from NN re-
searchers. The idea is to imbue the model with the ability to learn which bits of a
sequence are most important for a given task (in contrast, e.g., to relying only on the
final hidden state vector).

Attention was first proposed in the context of neural machine translation model by
Bahdanau et al [10]. The original RNN model for machine translation [184] encodes
the source sentence into a fixed-length vector (by passing an RNN over the input,
as described in Section 3.2.5). This is then accepted as input by a decoder network,
which uses the single encoded vector as the only information pertaining to the source
sentence. This means that all relevant information required for the translation must
be stored in a single vector — a difficult aim.

The attention mechanism was proposed to alleviate this requirement. At each
time step (as the decoder generates each word), the model identifies a set of positions
in the source sentence that is most relevant to its current position in the output (a
function of its index and what it has generated thus far). These positions will be
associated with corresponding state vectors. The current contextualizing vector (to
be used to generate output) can then be taken as a sum of these, weighted by their
estimated relevance. This attention mechanism has also been used in image caption
generation [202]. A similar line of work includes Neural Turing Machines by Graves
et al [74] and Memory Networks by Weston et al [196].

10 Kezban Dilek Onal et al.

3.3 Word Embeddings and Semantic Compositionality

3.3.1 Distributional semantics

A distributional semantic model (DSM) is a model that relies on the distributional
hypothesis [83], according to which words that occur in the same contexts tend to
have similar meanings, for associating words with vectors that can capture their
meaning. Statistics on observed contexts of words in a corpus is quantified to derive
word vectors. The most common choice of context is the set of words that co-occur
in a context window.

Baroni et al [14] classify existing DSMs into two categories: context-counting and
context-predicting. The context-counting category includes earlier DSMs such as Hy-
perspace Analog to Language (HAL) [122], Latent Semantic Analysis (LSA) [53]. In
these models, low-dimensional word vectors are obtained via factorisation of a high-
dimensional sparse co-occurrence matrix. The context-predicting models are neural
language models in which word vectors are modelled as additional parameters of a
neural network that predicts co-occurrence likelihood of context-word pairs. Neural
language models comprise an embedding layer that maps a word to its distributed
representation. A distributed representation of a symbol is a vector of features that
characterize the meaning of the symbol and are not mutually exclusive [132].

Early neural language models were not aimed at learning representations for
words. However, it soon turned out that the embedding layer component, which
addresses the curse of dimensionality caused by one-hot vectors [17], yields use-
ful distributed word representations, so-called word embeddings. Collobert and We-
ston [44] are the first ones to show the benefit of word embeddings as features for
NLP tasks. Soon afterwards, word embeddings became widespread after the intro-
duction of the shallow models Skip-gram and Continuous Bag of Words (CBOW) in
the word2vec framework by Mikolov et al [138, 140]; see Section 3.3.5.

Baroni et al [14] report that context-predicting models outperform context-count-
ing models on several tasks, including question sets, semantic relatedness, synonym
detection, concept categorization and word analogy. In contrast, Levy et al [108] point
out that the success of the popular context-predicting models word2vec and GloVe
does not originate from the neural network architecture and the training objective but
from the choices of hyper-parameters for contexts. A comprehensive analysis reveals
that when these hyper-parameter choices are applied to context-counting models, no
consistent advantage of context-predicting models is observed over context-counting
models.

3.3.2 Semantic compositionality

Compositional distributional semantics or semantic compositionality (SC) is the
problem of formalizing how the meaning of larger textual units such as sentences,
phrases, paragraphs and documents are built from the meanings of words [142]. Work
on SC studies are motivated by the Principle of Compositionality which states that
the meaning of a complex expression is determined by the meanings of its constituent
expressions and the rules used to combine them.

Neural Information Retrieval: At the End of the Early Years 11

A neural SC model maps the high-dimensional representation of a textual unit
into a distributed representation by forward propagation in a neural network. The
neural network parameters are learned by training to optimize task-specific objec-
tives. Both the granularity of the target textual unit and the target task play an impor-
tant role for the choice of neural network type and training objective. A SC model that
considers the order of words in a sentence and aims to obtain a deep understanding
may fail in an application that requires representations that can encode high-level con-
cepts in a large document. A comparison of neural SC models of sentences learned
from unlabelled data is presented in [84]. Besides the models reviewed by Hill et al
[84], there exist sentence-level models that are trained using task-specific labelled
data. For instance, a model can be trained to encode the sentiment of a sentence using
a dataset of sentences annotated with sentiment class labels [113].

To the best of our knowledge, there is no survey on neural SC models for dis-
tributed representations of long documents, although the representations are useful
not only for document retrieval but also for document classification and recommen-
dation. In Section 4.2.2 we review the subset of neural SC models and associated
training objectives adopted specifically in IR tasks.

3.3.3 Neural language models

A language model is a function that predicts the acceptability of pieces of text in a
language. Acceptability scores are useful for ranking candidates in tasks like machine
translation or speech recognition. The probability of a sequence of words P (w1, w2,
. . . , wn) in a language, can be computed by Equation 1, in accordance with the chain
rule:

P (w1, w2, . . . , wt−1, wt) = P (w1)P (w2 | w1) · · ·P (wt | w1, w2, . . . , wt−1) (1)

Probabilistic language models mostly approximate Equation 1 by P (wt | wt−n, . . . ,
wt−1), considering only a limited context of size n, that immediately precedes wt. In
neural language models the probability P (w | c) of a word w to follow the context c
is computed by a neural network. The neural network takes a context c and outputs
the conditional probability P (w | c) of every word w in the vocabulary V of the
language:

P (w | c, θ) = exp(sθ(w, c))∑
w′∈V exp(sθ(w′, c))

. (2)

Here, sθ(w, c) is an unnormalized score for the compatibility of w given the context
c; sθ(w, c) is computed via forward propagation of the context c through a neural
network defined with the set of parameters θ. Note that P (w | c) is computed by the
normalized exponential (softmax) function in Equation 2, over the sθ(w, c) scores for
the entire vocabulary.

Parameters of the neural network are learned by training on a text corpus using
gradient-descent based optimization algorithms to maximize the likelihood function
L in Equation 3, on a given corpus T :

L(θ) =
∑

(t,c)∈T

P (t | c, θ). (3)

12 Kezban Dilek Onal et al.

w1 w2 w3

Word Embedding Layer

hc

e1 e2 e3

Hidden Layer

Classifier Layer

w4

Fig. 4: Architecture of neural language models.

The first neural language model published is the Neural Network Language Model
(NNLM) [17]. The common architecture shared by neural language models is de-
picted in Figure 4, with example input context c = w1, w2, w3 and the word to pre-
dict being w4, extracted from the observed sequence c = w1, w2, w3, w4. Although
a probability distribution over the vocabulary V is computed, the word that should
have the maximum probability is shown at the output layer, for illustration purposes.

The neural network takes one-hot vectors w1, w2, w3 of the words in the context.
The dimensionality of the one-hot vectors is 1× |V |. The embedding layer E in Fig-
ure 4 is indeed a |V | × d-dimensional matrix whose i-th row is the d-dimensional
word embedding for the i-th word in the vocabulary. The embedding vector of the
i-th word in the vocabulary is obtained by multiplying the one-hot vector of the word
with the E matrix or simply extracting the ith row of the embedding matrix. Conse-
quently, high dimensional one-hot vectors of words w1, w2, w3 are mapped to their
d-dimensional embedding vectors e1, e2, e3 by the embedding layer. Note that d is
usually chosen to be in the range 100–500 whereas |V | can go up to millions.

The hidden layer in Figure 4 takes the embedding vectors e1, e2, e3 of the context
words and creates a vector hc for the input context. This layer differs between neural
language model architectures. In NNLM [17] it is a non-linear neural network layer
whereas in the CBOW model of word2vec [138], it is vector addition over word
embeddings. In the Recurrent Neural Network Language Model (RNNLM) [137] the
hidden context representation is computed by a recurrent neural network. Besides
the hidden layer, the choice of context also differs among models. In [44] and in the
CBOW model [138] context is defined by the words that surround a center word in a
symmetric context. In the NNLM [17] and RNNLM [137] models, the context is de-
fined by words that precede the target word. The Skip-gram [138] takes a single word

Neural Information Retrieval: At the End of the Early Years 13

as input and predicts words from a dynamically sized symmetric context window
around the input word.

The classifier layer in Figure 4, which is composed of a weights matrix C of
dimension d × |V | and a bias vector of dimension |V |, is used to compute sθ(w, c)
using Equation 4:

sθ(w, c) = hcC + b. (4)

To sum up, the neural network architecture for a Neural Language Model (NLM) is
defined by |V |, d, the context type, the context size |c| and the function in the hid-
den layer. The parameter set θ to be optimized includes the embedding matrix E,
parameters from the hidden layer, the weights matrix C and the bias vector b of the
classifier layer. The embedding layer E is treated as an ordinary layer of the net-
work, its weights are initialized randomly and updated with back-propagation during
training of the neural network.

3.3.4 Efficient training of NLMs

As mentioned in our discussion of Equation 1, the output of a NLM is a normalized
probability distribution over the entire vocabulary. Therefore, for each training sam-
ple (context pair (t, c)), it is necessary to compute the softmax function in Equation 2
and consider the whole vocabulary for computing the gradients of the likelihood func-
tion in back-propagation. This makes the training procedure computationally expen-
sive and prevents the scalability of the models to very large corpora.

Several remedies for efficiently training NLMs have been introduced. The reader
may refer to Chen et al [36] for a comparison of these remedies for the NNLM.
The first group of remedies such as Hierarchical Softmax [147] and differentiated
softmax [36] propose updates to the softmax layer architectures for efficient compu-
tation. The second approach, adopted by methods like Importance Sampling (IS) [18]
and Noise Contrastive Estimation (NCE) [146], is to avoid the normalization by using
modified loss functions to approximate the softmax. Collobert and Weston [44] pro-
pose the cost function in Equation 5, which does not require normalization over the
vocabulary. The NLM is trained to compute higher sθ scores for observed context-
word pairs (c, t) compared to the negative samples constructed by replacing t with
any other word w in V . The context is defined as the words in a symmetric window
around the center word t.

∑
(t,c)∈T

∑
w∈V

max(0, 1− sθ(t, c) + sθ(w, c)) (5)

Mnih and Teh [146] apply NCE [81] to NLM training. By using NCE, the probability
density estimation problem is converted to a binary classification problem. A two-
class training data set is created from the training corpus by treating the observed
context-word pairs (t, c) as positive samples and k noisy pairs (t′, c) constructed
replacing t with a word t′ sampled from the noise distribution q.

14 Kezban Dilek Onal et al.

w1 w2 w4 w5

w3

Word Embedding Layer (E)

(a) Continuous Bag of Words (CBOW)

w1 w2 w4 w5

w3

Word Embedding Layer (E)

(b) Skip-Gram

Fig. 5: Models of the word2vec framework.

3.3.5 word2vec and GloVe

Mikolov et al [138] introduce the Skip-gram and CBOW models that follow the NLM
architecture with a linear layer for computing a distributed context representation.
Figure 5 illustrates the architecture of word2vec models with context windows of
size five. The CBOW model is trained to predict the center word of a given context.
In the CBOW model, the hidden context representation is computed by the sum of
the word embeddings. On the contrary, the Skip-gram model is trained to predict
words that occur in a symmetric context window given the center word. The name
Skip-gram is used since the size of symmetric context window is selected randomly
from the range [0, c] for each center word. Skip-gram embeddings are shown to out-
perform embeddings obtained from NNLMs and RNNLMs in capturing the semantic
and syntactic relationships between the words.

word2vec owes its widespread adoption in the NLP and IR communities to
its scalability. Efficient training of Skip-gram and CBOW models is achieved by
hiearchical softmax [147] with a Huffman tree [138]. In follow-up work [140], Nega-
tive Sampling (NEG) is proposed for efficiently training the Skip-Gram model. NEG
is a variant of NCE. NEG, differently from NCE, assumes the noise distribution q
to be uniform and k = |V | while computing the conditional probabilities. For a de-
tailed discussion of NCE and NEG, see notes by Dyer [60]. It is crucial to note that
the Skip-Gram with Negative Sampling (SGNS) departs from the goal of learning a
language model and only embedding layer of the model is used in practice.

Subsampling frequent words is another extension introduced in [140] for speed-
ing up training and increasing the quality of embeddings. Each word wi in the corpus
is discarded with probability p(wi), computed as a function of its frequency f(wi) in
the corpus, given in Equation 6:

p(wi) = 1−

√
t

f(wi)
. (6)

Neural Information Retrieval: At the End of the Early Years 15

GloVe. GloVe [161] combines global context and local context in the training objec-
tive for learning word embeddings. In contrast to NLMs, where embeddings are op-
timized to maximize the likelihood of local contexts, GloVe embeddings are trained
to fit the co-occurrence ratio matrix.

Context-counting vs. context-predicting. Levy et al [108] discuss that diluting fre-
quent words before training enlarges the context window size in practice. Experi-
ments show that the hyper-parameters about context-windows, like dynamic size and
subsampling frequent words, have a notable impact on the performance of SGNS
and GloVe [108]. Levy et al show that when these choices are applied to traditional
DSMs, no consistent advantage of SGNS and GloVe is observed. In contrast to the
conclusions obtained in [14], the success of context-predicting models is attributed
to choice of hyper-parameters, which can also be used for context-counting DSMs,
rather than to the neural architecture or the training objective.

3.3.6 Paragraph Vector

The PV [103] extends word2vec in order to learn representations for so-called
paragraph, textual units of any length. Similar to word2vec, it is composed of two
separate models, namely Paragraph Vector with Distributed Memory (PV-DM) and
Paragraph Vector with Distributed Bag of Words (PV-DBOW). The architectures of
PV-DM and PV-DBOW are illustrated in Figure 6. The PV-DBOW model is a Skip-
Gram model where the input is a paragraph instead of a word. The PV-DBOW is
trained to predict a sample context given the input paragraph. In contrast, the PV-DM
model is trained to predict a word that is likely to occur in the input paragraph after
the sample context. The PV-DM model is a CBOW model extended with a paragraph
in the input layer and a document embedding matrix. In the PV-DBOW model, only
paragraph embeddings are learned whereas in the PV-DM model word embeddings
and paragraph embeddings are learned, simultaneously.

w1 w2 w3

w4

E-Lookup

p

D-Lookup

(a) PV-DM

w1 w2 w3 w4

p

D-Lookup

(b) PV-DBOW

Fig. 6: Models of the paragraph vector framework.

16 Kezban Dilek Onal et al.

In Figure 6, p stands for the index of the input paragraph and w1, w2, w3, w4 repre-
sent the indices of the words in a contiguous sequence of words sampled from this
paragraph. A sequence of size four is selected just for illustration purposes. Also, D
represents the paragraph embedding matrix and E stands for the word embedding
matrix. At the lowest layer, the input paragraph p is mapped to its embedding by a
lookup in the D matrix. The hidden context representation is computed by summing
the embeddings of the input words and paragraph, which is the same as in the CBOW
model.

Paragraph vector models are trained on unlabelled paragraph collections. An em-
bedding for each paragraph in the collection is learned at the end of training. The
embedding for an unseen paragraph can be obtained by an additional inference stage.
In the inference stage, D is extended with columns for new paragraphs; D is updated
using gradient descent while other parameters of the model are kept fixed.

4 Taxonomy

To organize the material surveyed in this paper, we use a simple taxonomy. We clas-
sify publications based on the IR task to which neural models are applied and how
neural network models are utilized for solving the target IR task. In the next subsec-
tions, we first detail the sub-categories of the Task and How features. Secondly, we
provide a roadmap for the rest of the survey in Section 4.3.

4.1 Task

As mentioned previously, the majority of reviewed work is about textual IR tasks.
Each of the tasks is concerned with a different target textual unit (TTU) or with
different TTU pairs. We group publications on textual IR into five classes given in
Table 1, considering a TTU or TTU pairs with different characteristics.

Table 1: TTU or TTU pairs for the textual IR tasks covered in the survey.

Task TTU or TTU pair Relation

Ad-hoc retrieval Query-document relevant

Query understanding Query similar

Sponsored search Query-ad relevant

Question answering Question-answer answer

Similar item retrieval Document-document similar

The hierarchy of tasks in the rest of the survey is as follows:

1. Ad-Hoc retrieval: Ad-hoc retrieval refers to a single search performed by a user:
a single query, with no further interaction or feedback, on the basis of which an

Neural Information Retrieval: At the End of the Early Years 17

IR system strives to return an accurate document ranking. This comprises of the
following tasks:

– Document ranking
– Query expansion
– Query re-weighting
– Result diversification
– Semantic expertise retrieval
– Product search

2. Query understanding: This category includes IR tasks concerned with under-
standing the user intent in order to assist the user in typing queries or improving
document retrieval. Publications here are focused on distributed representations
of queries and finding similar queries that can better express user intent. We dis-
tinguish the following tasks:

– Query suggestion
– Query auto completion
– Query classification

3. Question answering: This class includes tasks that are focused on retrieval of text
segments that answers the user question. Answer segments may have different
granularities, such as sentence, passage or even the entire document. Here we
identify two tasks:

– Answer sentence retrieval
– Conversational agents

4. Sponsored search: This category includes tasks related to retrieval of ads relevant
to user queries.

5. Similar item retrieval: This category includes tasks related to retrieving similar
items of the same type as the query. There exist a large number of neural seman-
tic compositionality models for textual similarity. To remain focused we limit
ourselves to publications that focus on the retrieval effectiveness for similar item
search. The following tasks are considered:

– Related document search
– Detecting text re-use
– Similar Question Retrieval in CQA
– Content-based recommendation

4.2 How

The How feature defines how neural models and distributed representations are adopt-
ed and utilized in an IR task. The methods can be grouped in two main classes: Aggre-
gate and Learn. Availability of code and existing embeddings from word2vec [136]
and GloVe [161] (see Appendix B.1) motivated the Aggregate approaches for Neural
IR, especially for extending traditional IR models to integrate word embeddings. In
contrast, the Learn category covers conceptually different approaches which directly
incorporate word embeddings within NN models, reflecting a more significant shift
toward pursuing end-to-end NN architectures in IR.

18 Kezban Dilek Onal et al.

4.2.1 Aggregate

Publications in this category are focused on the following research question raised
by Clinchant and Perronnin [42]: If we were provided with an embedding of words
in a continuous space, how could we best use it in IR/clustering tasks? The methods
in this category rely on pre-trained word embeddings as external resources in order
to build or extend relevance matching functions. Existing work can be split into two
sub-categories depending on how the embeddings are utilized:

Explicit Word embeddings are considered as building blocks for distributed TTU
representations. Publications that follow this pattern treat a TTU as a Bag of Em-
bedded Words (BoEW) or a set of points in the word embedding space. The
BoEW is aggregated to build a single vector for the TTU. The most common
aggregation method is averaging or summing the vectors of the terms in the TTU.

Implicit Here, one utilizes the vector similarity in the embedding space in language
modeling frameworks without explicit computation of distributed representations
for TTUs pairs. For instance, Zuccon et al [225] compute translation probabilities
of word pairs in a translation language model retrieval framework with cosine
similarity of Skip-Gram vectors.

4.2.2 Learn

This category covers work on learning end-to-end neural models for IR, specifically
for semantic matching of TTU pairs. The neural models in this category are designed
and trained to learn word embeddings and semantic compositionality functions for
building distributed representations for TTUs or TTU pairs, simultaneously, from
scratch, given only the raw text of TTUs. We observed that in some recent publica-
tions, the similarity or relevance function on top of distributed representations is also
modeled with a neural network and learned, simultaneously.

In the rest of the survey, Semantic Compositionality Network (SCN) refers to a
neural network that composes distributed TTU representations based on either the
embeddings of words in the TTU or the one-hot term vector. Publications in this
category mainly vary in the training objectives defined based on the distributed rep-
resentation for TTUs. Four separate training objectives are observed in the reviewed
work. Based on these objectives, we define the four sub-categories, namely

– Learn to autoencode,
– Learn to match,
– Learn to predict and
– Learn to generate,

all of which are detailed below.

Learn to autoencode. This category covers mostly relatively early work that relies
on auto-encoder (see Section 3.2.2) architectures for learning TTU representations.
As depicted in Figure 7, the training objective is to restore the input x based on
the distributed representation hx learned by the encoder. Generally, the encoder and
decoder are mirrored neural networks with different architectures.

Neural Information Retrieval: At the End of the Early Years 19

x hx xD
ec

E
nc

Fig. 7: Auto-encoder architecture. Note that the encoder is the Semantic Composi-
tionality Network (SCN).

Learn to match. Learning to match [112] is the problem of learning a matching func-
tion f(x, y) that computes a degree of similarity between two objects x and y from
two different spaces X and Y . Given training data T composed of triples (x, y, r),
learning to match is the optimization problem in Equation 7:

argmin
f∈F

∑
(x,y,r)∈T

L(r, f(x, y)). (7)

Here, L denotes a loss function between the actual similarity score r and the score
predicted by the f function. Learn to match models introduce neural architectures for
computing the relevance matching function f .

Learn to match models require similarity assessments for training. Since it is
difficult to obtain large amounts of supervised data, click information in click-through
logs are exploited to derive similarity assessments for query-document and query-ad
pairs. If a pair (x, y) is associated with clicks, the objects are assumed to be similar;
they are dissimilar in the absence of clicks. In the case of query-query pairs, co-
occurrence in a session is accepted as similarity signal that can be extracted from
query logs. We replace x and y of Equation 7 with q and d to represent a query
and a document object, respectively. The document object can be any textual unit
that needs to be matched against a query, such as a document, query or ad; (q, d+)
denotes a (query-clicked document) pair extracted from logs.

A training objective adopted by the majority of the publications in this category
is to minimize the negative log likelihood function in Equation 8:

L = − log
∏

(q,d+)

P (d+ | q) (8)

The likelihood of a document d given a query q, is computed by Equation 9 with a
softmax over similarity scores of distributed representations:

P (d | q) = exp(f(q, d))∑
d′∈D exp(f(q, d′)

(9)

Here, f is a relevance matching function; L requires the computation of a probability
distribution over the entire document collection D for each (q, d+) pair. Since this
is computationally expensive, D is approximated by a randomly selected small set
of unclicked documents, similar to the softmax approximation methods for neural
language models in Section 3.3.4.

There are two patterns of neural architectures for the relevance matching function
f , namely Representation Based and Interaction Based, as illustrated in Figure 8.
In Representation Based architectures, the query and document are independently

20 Kezban Dilek Onal et al.

run through mirrored neural models (typically this would be a Siamese architecture
[28], in which weights are shared between the networks); relevance scoring is then
performed by a model operating over the two induced representations. In contrast,
in an Interaction Based architecture, one first constructs a joint representation of
the query and document pair and then runs this joint input through a network. The
architectures differ in their inputs and the semantics of the hidden/representational
layers. Guo et al [78] point out that Representation Based architectures fail to catch
exact matching signals which are crucial for retrieval tasks.

Query Q Document D

Joint representation

…

…

…

Matching/scoring

Input

Representation
(joint for Q and D)

Query Q

…

Document D

Matching/scoring

Input

Representation
(separate for Q and D)

…

…
…

…

…

(A) (B)

Fig. 8: Two basic neural architectures for scoring the relevance of a TTU pair, query
and document for illustrative purposes. (A) Representation Based (B) Interaction
Based. This figure is inspired by Figure 1 in Guo et al. [78].

In Representation Based architectures, input vector representations of q, d are
mapped into distributed representations hq , hd by the Semantic Compositionality
Network (SCN) and the similarity score of the objects is computed by the simi-
larity of the distributed representations. Usually, cosine similarity is used to compute
the similarity of representation vectors created by the SCN, as given in Equations 10
and 11:

hq = SCN(q), hd = SCN(d) (10)

f(q, d) =
hq · hd
|hq| |hd|

. (11)

In Figure 9, the training objective in Equation 8 is illustrated on a Representation
Based architecture with four randomly selected non-relevant documents. Let d1 be
a relevant document and d2, d3, d4, d5 non-relevant documents for the query q. The
Siamese network is applied to compute similarity scores for each pair (q, di). The
target values for the output nodes of the entire network is forced to be [1.0, 0.0, 0.0,
0.0, 0.0] during training.

Learn to predict. The success of word-based neural language models has motivated
models for learning representations of larger textual units from unlabelled data [84,
103]. As mentioned previously, neural language models are context-predicting distri-
butional semantic models (DSMs). Learn to predict models rely on an extension of
the context-prediction idea to larger linguistic units, which is that similar textual units

Neural Information Retrieval: At the End of the Early Years 21

q

SC
N

Input TTU Vectors

Semantic compositionality sub-network

h: Distributed representation of TTUs

f(di, q): Relevance scores

P (di | q): Likelihood scores

d1 d2 d3 d4 d5

SC
N

SC
N

SC
N

SC
N

SC
N

Fig. 9: Architecture of Representation Based Learn to match models adapted from
[55].

occur in similar contexts. For instance, sentences within a paragraph and paragraphs
within a document are semantically related. The organization of textual units—of dif-
ferent granularity—in corpora can be used to learn distributed representations. Con-
textual relationships of textual units are exploited to design training objectives similar
to neural language models.

We refer to models that rely on the extended distributional semantics principle to
obtain distributed TTU representations as Learn to predict models, in accordance with
the context-predicting label used for neural language models. Learn to predict models
are neural network models trained using unlabelled data to maximize the likelihood of
the context of a TTU. Among the models reviewed in [84], Skip-thought Vector [98]
and Paragraph Vector (PV) [103] are successful representatives of the learn to predict
context idea. The training objective of the Skip-thought Vector is to maximize the
likelihood of the previous and the next sentences given an input sentence. The context
of the sentence is defined as its neighboring sentences. For details of the PV model,
see Section 3.

The main context of a textual unit consists of the words it contains. Containment
should be seen as a form of co-occurrence and the content of a document is required
to define its textual context. Two documents are similar if they contain similar words.
Besides the content, temporal context is useful for defining TTU contexts. For in-
stance, the context of the query can be defined by other queries in the same session
[76]. Finally, the context of a document is defined by joining its content and the
neighboring documents in a document stream in [58].

Learn to generate. This category covers work in which a synthetic textual unit is
generated based on the distributed representation of an input TTU. Studies in this
category are motivated by successful applications of RNNs, LSTM networks, and
encoder-decoder architectures, illustrated in Figure 10, to sequence-to-sequence learn-
ing [72] tasks such as machine translation [39] and image captioning [202]. In these
applications, an input textual or visual object is encoded into a distributed representa-

22 Kezban Dilek Onal et al.

tion with a neural network and a target sequence of words—a translation in the target
language or a caption—is generated by a decoder network.

x hx y

D
ec

E
nc

Fig. 10: Encoder decoder architecture. Note that the encoder is the SCN.

4.3 Roadmap

In Table 2, we provide a classification of reviewed work with respect to the features
Task and Approach.

Table 2: Classification of reviewed work.

Section Task Approach Publications

5 Ad-hoc retrieval

5.1.1 Document ranking Aggregate Explicit [26, 42, 66,
145, 150,
189]

Implicit [65, 165, 168,
225]

5.1.2 Document ranking Learn Learn to match [79, 89, 114,
152, 156,
157, 175, 176,
207]

Learn to predict [1, 58]
Learn to generate [116]

5.2 Query re-weighting Explicit [222]

5.3.1 Query expansion Aggregate Explicit [3, 5, 164,
169]

Implicit [57, 212, 213]

5.3.2 Learn Learn to autoencode [80]
Learn to match [181]

5.4.1 Diversification Aggregate Explicit [153]

5.4.2 Learn Learn to match [200]

5.5.1 Expertise retrieval Learn Learn to predict [188]

5.6.1 Product search Learn Learn to match [187]

Neural Information Retrieval: At the End of the Early Years 23

6 Query tasks

6.1 Query auto completion Aggregate Implicit [29]

Learn Learn to match [143, 144]

6.2.1 Query suggestion Learn Learn to generate [182]

6.3 Query classification Aggregate Explicit [213]

6.4 Proactive search Learn Learn to generate [123]

7 Question answering

7.1.1 Answer sentence
retrieval

Learn Learn to match [174, 183,
191, 203,
211]

7.2.1 Conversational agents Learn Learn to match [203]

8 Sponsored search

8.1 Sponsored search Learn Learn to match [8, 214, 215]

8.2 Learn Learn to predict [75, 76, 217]

9 Similar item retrieval

9.1.1 Related document
search

Aggregate Explicit [96, 101]

9.1.2 Learn Learn to autoencode [171]
Learn to predict [48, 58, 103]

9.2 Detecting text reuse Aggregate Explicit [216]

9.3.1 Similar Question
Retrieval

Aggregate Explicit [223]

9.3.2 Learn Learn to match [107]
Learn to generate [107]

9.4.1 Content-based
recommendation

Aggregate Explicit [130]

9.4.2 Learn Learn to match [69]

10 Non-textual/Behavioural [25, 217]

In Section 5, 6, 7, 8 and 9 below we survey work on neural models for Ad-hoc
retrieval, query understanding, question answering, sponsored search and similar item
retrieval, respectively.

24 Kezban Dilek Onal et al.

5 Ad-hoc Retrieval

In this section we survey work on neural models for ad-hoc retrieval tasks. We devote
a subsection per task listed in Table 2 under ad-hoc retrieval and follow the How
feature as explained in Section 4 for organizing the subsections.

5.1 Document ranking

5.1.1 Aggregate

In this section, we present publications that rely on pre-trained word embeddings for
ad-hoc retrieval under the Implicit and Explicit categories.

Explicit. Clinchant and Perronnin [42] present the earliest work using word embed-
dings in IR. The context-counting model Latent Semantic Indexing (LSI) [53] is used
to induce word embeddings, which are then transformed into fixed-length Fisher Vec-
tors (FVs) via Jaakkola et al [90]’s Fisher Kernel (FK) framework. The FVs are
then compared via cosine similarity for document ranking. Experiments on ad-hoc
search using Lemur are reported for three collections: TREC ROBUST04, TREC
Disks 1&2, and English CLEF 2003 Ad-hoc. While results show improvements over
standard LSI on all three collections, standard TF-IDF performs slightly better on
two of the three collections, and Divergence From Randomness (DFR) [4] performs
far better on all collections. The authors note that thse “results are not surprising as it
has been shown experimentally in many studies that latent-based approaches such as
LSI are generally outperformed by state-of-the-art IR models in Ad-Hoc tasks.”

Vulic and Moens [189] are the first to aggregate word embeddings learned with
a context-predicting distributional semantic model (DSM). Query and document are
represented as a sum of word embeddings learned from a pseudo-bilingual document
collection with a Skip-gram model (Ganguly et al [66] discusses why such a repre-
sentation for documents could be noisy). Each document pair in a document-aligned
translation corpus is mapped to a pseudo-bilingual document by merging source and
target documents, removing sentence boundaries and shuffling the complete docu-
ment. Owing to these shuffled pseudo-bilingual documents, words from the source
and target language are mapped to the same embedding space. This approach for
learning bilingual word embeddings is referred to as Bilingual word Embeddings
Skip-Gram (BWESG). Documents are ranked by the cosine similarity of their em-
bedding vector to the query vector. The query-document representations are evaluated
both on cross-lingual and mono-lingual retrieval tasks. For the monolingual experi-
ments, ranking the proposed distributed representations outperforms ranking LDA
representations. While this approach is simple and able to benefit from a potentially
vast body of comparable vs. parallel corpora for training, random shuffling loses the
precise local context windows exploited by word2vec training (which parallel cor-
pora would provide), effectively setting context window size to the length of the entire
document. The approach and experimental setup otherwise follows the monolingual
version of the authors’ method. Cross-lingual results for CLEF 2001–2003 Ad-hoc

Neural Information Retrieval: At the End of the Early Years 25

English-Dutch show that the embedding approach outperforms the unigram baseline
and is comparable to the LDA baseline. As with monolingual results, the mixture
models perform better, with a cross-lingual three way mixture of unigram, LDA, and
embedding. No experiments are reported with parallel corpora for comparison, which
would be interesting for future work.

Mitra et al [145], Nalisnick et al [150] propose the Dual Embedding Space Model
(DESM), writing that “a crucial detail often overlooked when using word2vec is
that there are two different sets of vectors . . . IN and OUT embedding spaces [pro-
duced by word2vec]. . . . By default, word2vec discards WOUT at the end of
training and outputs onlyWIN ...” In contrast, the authors retain both input and output
embeddings. Nalisnick et al [150] point out that within the same embedding space,
either IN or OUT, the neighbors are functionally similar words. However, the neigh-
bors of a word represented with its IN embedding vector in the OUT space, are topi-
cally similar words. Topically similar words are likely to co-occur in a local context
whereas functionally similar words are likely to occur in similar contexts. For in-
stance, for the term harvard, the terms faculty, alumni, and graduate are topically
similar terms and yale, stanford, cornell are functionally similar terms. Motivated by
this observation, Nalisnick et al [150] propose the DESM.

In the DESM, query terms are mapped to the IN space and document words to
the OUT space. Documents are embedded by taking an average (weighted by docu-
ment term frequency) over embedding vectors of document terms. Query-document
relevance is computed by average cosine similarity between each query term and the
document embedding. The authors induce word embeddings via word2vec CBOW
only, though they note that Skip-gram embeddings could be used interchangeably.
Experiments with ad-hoc search are carried out on a proprietary Web collection us-
ing both explicit and implicit relevance judgments. In contrast with DSSM [89], full
web page documents are indexed instead of only page titles. DESM’s IN and OUT
embedding space combinations are compared to baseline retrieval by BM25 and la-
tent semantic analysis (LSA) [53]. Out Of Vocabulary (OOV) query terms are ignored
for the DESM approach but retained for the baselines. Results show “DESM to be
a poor standalone ranking signal on a larger set of documents,” so a re-ranking ap-
proach is proposed in which the collection is first pruned to all documents retrieved
by an initial Bing search, and then re-ranked by DESM. Re-ranking results show
improvements over baselines, especially on the implicit feedback test set, with best
performance obtained when word embeddings are trained on queries and using IN-
OUT embedding spaces in document ranking. The authors surmise that training on
queries performs better due to users tending to include only significant terms from
their queries. Learned word embeddings are shared online (see Appendix B.1).

In [66], documents are modelled as a mixture distribution that generates the ob-
served terms in the document. Ganguly et al [66] estimate this distribution with k-
means clustering of embeddings of the terms in the document. The likelihood of a
query to be generated by the document is computed by the average inter-similarity of
the set of query terms to the centroids of clusters in the document, in the word em-
bedding space. For efficiency, the global vocabulary is clustered using word2vec
embeddings in advance and document specific clusters are created by grouping the
terms according to their global cluster ids. A centroid-based query likelihood function

26 Kezban Dilek Onal et al.

is evaluated in combination with language modeling with Jelinek-Mercer smoothing
on the TREC 6-7-8 and TREC Robust data sets. A significant improvement is ob-
served by the inclusion of word embedding-based query-likelihood function over the
standalone language model (LM) baseline.

Boytsov et al [26] consider the cosine similarity between the averaged word em-
bedding vectors of the query and document as a similarity function, in k-NN based
retrieval. The authors propose to replace the traditional term-based search by k-NN
based retrieval. Exact k-NN search fails to be efficient yet approximation algorithms,
such as Small-World Graph and Neighbourhood Approximations (NAPP), are pro-
posed as remedies. Experiments are performed on the Yahoo Answers and Stack
Overflow data sets. The cosine-similarity between averaged word embeddings is
found to be less effective than BM25 and cosine similarity of TF-IDF vectors.

Implicit. Zuccon et al [225] propose a Neural Translation Language Model (NLTM),
which integrates word embeddings into Berger and Lafferty [21]’s classic translation
model approach to query-likelihood IR. They estimate the translation probability be-
tween terms as the cosine similarity of the two terms divided by the sum of the cosine
similarities between the translating term and all of the terms in the vocabulary. Pre-
vious state-of-the-art translation models use mutual information (MI) embeddings to
estimate translation probabilities. Experiments evaluating NLTM on ad-hoc search
are reported on the TREC datasets AP87-88, WSJ87-92, DOTGOV, and MedTrack.
Results indicate that NLTM provides moderate improvements over the MI and classic
TM systems, based on modest improvements to a large number of topics, rather than
large differences on a few topics. Sensitivity analysis of the various model hyper-
parameters for inducing word embeddings shows that manipulations of embedding
dimensionality, context window size, and model objective (CBOW vs Skip-gram)
have no consistent impact upon NLTM’s performance vs. the baselines. Regarding
the choice of training corpus for learning embeddings vs. search effectiveness, al-
though effectiveness typically appears highest when embeddings are estimated us-
ing the same collection in which search is to be performed, the differences are not
statistically significant. Source code and learned embeddings are shared online (see
Appendix B.1).

Rekabsaz et al [165] investigate a set of existing models including Pivoted Doc-
ument Normalization, BM25, BM25 Verboseness Aware, Multi-Aspect TF, and Lan-
guage Modeling by generalizing the translation model to the probabilistic relevance
framework. They extend the translation models in Pseudo-Relevance (PR) frame-
work by integrating the effect of changing term frequencies. For experimental eval-
uation 6 test collections are used: a combination of TREC 1 to 3, TREC-6, TREC-
7, and TREC-8 of the AdHoc track, TREC-2005 HARD track, and CLEF eHealth
2015 Task 2 User-Centred Health Information Retrieval. In terms of baseline mod-
els, Rekabsaz et al use (1) the original version of the extended models; (2) the query
expanded model using the logarithm weighting model; and (3) the query expanded
model with the normalization over the expanded terms. The evaluation metrics are
MAP and NDCG@20. Experimental results show that the newly proposed models
achieve state-of-the-art results.

Neural Information Retrieval: At the End of the Early Years 27

Cosine similarity of word2vec embeddings is used in a similar way in the Gen-
eralized Language Model (GLM) [65]. Ganguly et al [65] propose GLM for inte-
grating word embeddings with the query-likelihood language modelling. Semantic
similarity between query and document/collection terms is measured by cosine simi-
larity between word embeddings induced via word2vec CBOW. The authors frame
their approach in the context of classic global vs. local term similarity, with word
embeddings trained without reference to queries representing a global approach akin
to the Latent Dirichlet Allocation (LDA) of Wei and Croft [193]. Like Rekabsaz
et al [164] and Zuccon et al [225], the authors build on Berger and Lafferty [21]’s
“noisy channel” translation model. Smoothing of mixture model components resem-
bles classic cluster-based LM smoothing of Liu and Croft [119]. Ad-hoc search re-
sults reported for TREC 6-8 and Robust using Lucene show improvements over both
unigram query-likelihood and LDA. However, the parameters appear to be tuned on
the test collections, and LDA results are much lower than Wei and Croft [193]’s,
which the authors hypothesize is due to training LDA on the entire collection rather
than on collection subsets. The authors do not compare their global approach vs.
local pseudo-relevance feedback (PRF) [102], which prior work has shown to outper-
form LDA [209]; while typically a query-time technique, it can be approximated for
greater efficiency [34].

Roy et al [168] proposes a relevance feedback model that employs word em-
beddings, based on the intuition that adding word embeddings can result in seman-
tic composition of individual words. They buid a kernel functions around the query
word embeddings that are treated as data points. Then they estimate the kernel den-
sity of the probability density function that generates the query word embeddings.
The query term can control the shape of the estimated probability density function.
In this way, they develop a relevance feedback model that integrates semantic rela-
tionships and compositionality of words. Documents are then ranked according to
their KL divergence from the estimated kernel density function. They evaluate their
approach on TREC 6–8 and Robust adhoc news retrieval and the TREC 9-10 WT10G
web retrieval test collections. They compare their method with the standard relevance
model that only uses statistical co-occurrences between query terms and words in top
ranked documents, and find that it significantly outperforms the baseline. A future
direction might be exploring larger units embeddings such as sentence and paragraph
embeddings.

5.1.2 Learn

Learn to match

Representation Based. The Deep Structured Semantic Model (DSSM) [89] is the
earliest neural Representation Based Learn to match model for document ranking.
DSSM was one of the pioneering models incorporating click-through data in deep
NNs. It has been built on by a variety of others [143, 144, 175, 176, 207]. Other work
in this category is either an architectural variant of DSSM with different SCNs or
they propose novel ways of using distributed representations by DSSM variants in

28 Kezban Dilek Onal et al.

order to improve retrieval effectiveness. Architectural variants such as the Convolu-
tional Latent Semantic Model (CLSM) [175] and LSTM Deep Structured Semantic
Model (LSTM-DSSM) [156, 157] differ from DSSM in the input representations
and architecture of the SCN component. Besides architectural variants with different
SCN types, Nguyen et al [152] propose two high level views of how to incorpo-
rate a knowledge base (KB) graph into DSSM [89]. Li et al [114] utilize distributed
representations produced by DSSM and CLSM in order to re-rank documents based
on in-session contextual information. Ye et al [207] question the assumptions about
clicked query-document pairs in order to derive triplets for training variants of the
DSSM models.

The SCN of the DSSM model is composed of a deep neural network with three
non-linear layers placed on top of a word hashing layer. Documents are indexed only
by title text rather than the entire body text. The query and the document are first
modeled as two high dimensional term vectors (i.e., a bag-of-words representation).
Each term vector is mapped to a trigram vector by the word hashing layer, in order
to cope with a large vocabulary. For instance, the word vector is mapped to {.ve, vec,
ect, cto, tor ,or.} where the dot sign is used as the start and end character. This low-
dimensional trigram vector is then considered as input to the SCN. The vocabulary
size is reduced from 500K to 30K by replacing each term with its letter trigrams.
Trigram hashing also helps to address out of vocabulary (OOV) query terms not seen
in training data. The authors do not discuss how to mitigate hashing collisions; while
they show that such collisions are relatively rare (e.g., 0.0044% for the 500K vocab-
ulary size), this stems in part from indexing document titles only.

Convolutional Deep Structured Semantic Models (C-DSSM) [176] extend DSSM
by introducing a CNN with max-pooling as the SCN in the DSSM architecture (C-
DSSM). It first uses word hashing to transform each word into a vector. A convolu-
tional layer then projects each word vector within a context window to a local con-
textual feature vector. It also incorporates a max-pooling layer to extract the most
salient local features to form a fixed-length global feature vector for queries and web
documents. The main motivation for the max-pooling layer is that because the over-
all meaning of a sentence is often determined by a few key words, simply mixing
all words together (e.g., by summing over all local feature vectors) may introduce
unnecessary divergence and hurt overall semantic representation effectiveness. This
is a key difference between DSSM and C-DSSM.

Both DSSM [89] and C-DSSM [176] fail to capture contextual information of
queries and documents. To address this, Shen et al [175] propose a Convolutional
Latent Semantic Model (CLSM) built on top of DSSM. CLSM captures contextual
information by a series of projections from one layer to another in a CNN archi-
tecture [104]. The first layer consists of a word n-gram followed by a letter trigram
layer where each word n-gram is composed of its trigram representation, a form of
word hashing technique developed in DSSM. Then, a convolution layer transforms
these trigrams into contextual feature vectors using the convolution matrixWc, which
is shared among all word n-grams. Max-pooling is then performed against each di-
mension on a set of contextual feature vectors. This generates the global sentence
level feature vector v. Finally, using the non-linear transformation tanh and the se-
mantic projection matrix Ws, they compute the final latent semantic vector for the

Neural Information Retrieval: At the End of the Early Years 29

query/document. The parameters Wc and Ws are optimized to maximize the same
loss function used by Huang et al [89] for DSSM. Even though CLSM introduces
word n-grams to capture contextual information, it suffers from the same problems
as DSSM, including scalability. For example, CLSM performs worse when trained
on a whole document than when trained on only the document title Guo et al [78].

To sum up the architectural variants, DSSM takes a term vector of the textual
unit and treats it as a bag of words. In contrast, C-DSSM, CLSM and LSTM-DSSM
take a sequence of one-hot vectors of terms and treat the TTUs as a sequence of
words. CLSM includes a convolutional neural network and LSTM-DSSM includes
an LSTM network as SCN. The word hashing layer is common to all of these mod-
els. DSSM, CLSM and LSTM-DSSM are evaluated on large-scale data sets from
Bing in [89, 175, 176]. In [89], DSSM is trained on document title-query pairs and
is shown to outperform the Word Translation Model, BM25, TF-IDF and Bilingual
Topic Models with posterior regularization in terms of NDCG at cutoff values 1,
3 and 10. However, later work [78] performs two further experiments with DSSM:
indexing only document titles vs. indexing entire documents (i.e., full-text search).
Guo et al [78]’s results indicate that full-text search with DSSM does not perform
as well as traditional IR models. In [175], CLSM is shown to be more effective with
document titles. Finally, Shen et al [175] and Palangi et al [157] report that CLSM
outperforms DSSM and LSTM-DSSM outperforms CLSM when document titles are
used instead of full documents.

Liu et al [120] propose a neural model with multi-task objectives. The model in-
tegrates a deep neural network for query classification and the DSSM model for web
document ranking via shared layers. The word hashing layer and semantic represen-
tation layer of DSSM are shared between the two models. The integrated network
comprises separate task-specific semantic representation layers and output layers for
two different tasks. A separate cost function is defined for each task. During training,
in each iteration, a task is selected randomly and the model is updated only accord-
ing to the selected cost function. The proposed model is evaluated on large-scale
commercial search logs. Experimental results show improvements by the integrated
model over both standalone deep neural networks for query classification and a stan-
dalone DSSM for web search ranking.

Li et al [114] utilize distributed representations produced by DSSM and CLSM
in order to re-rank documents based on in-session contextual information. Similar-
ity of query-query and query-document pairs extracted from the session context is
computed using DSSM and CLSM vectors. These similarity scores are included as
additional features to represent session context in a context-aware learning to rank
framework. They evaluate XCode (internally developed by the authors), DSSM [89],
and C-DSSM [176] as models for deriving these contextual features and find that
DSSM offers the highest performance, followed by C-DSSM. Though they expected
C-DSSM to offer the highest performance, they note that C-DSSM could only be
trained on a small dataset with bounded size, in contrast to DSSM, which could be
trained on a larger dataset. Additionally, they note that observed performance differ-
ences may be due to imperfect tuning of model parameters, such as sliding window
size for C-DSSM. Nevertheless, contextual features derived using both DSSM and
C-DSSM offer performance benefits for re-ranking.

30 Kezban Dilek Onal et al.

Nguyen et al [152] propose two high level views of how to incorporate a knowl-
edge base (KB) graph into a ranking model like DSSM [89]. To the best of our knowl-
edge, this is one of the first IR studies that tries to incorporate KBs into a deep neu-
ral structure. The authors’ first model exploits KBs to enhance the representation
of a document-query pair and its similarity score by exploiting concept embeddings
learned from the KB distributed representation [63, 201] as input to deep NNss like
DSSM. The authors argue that this hybrid representation of the distributional se-
mantics (namely, word embeddings) and the symbolic semantics (namely, concept
embeddings taking into account the graph structure) would enhance document-query
matching. Their second model uses the knowledge resource as an intermediate com-
ponent that helps to translate the deep representation of the query towards the deep
representation of documents for an ad-hoc IR task. Strong empirical evidence is still
needed to demonstrate that adding a KB does in indeed benefit the deep neural archi-
tecture for capturing semantic similarity.

Ye et al [207] question assumptions about clicked query-document pairs in order
to derive triplets for training DSSM variant models. According to Ye et al [207] these
three assumptions are: (i) each clicked query-document pair is equally weighted;
(ii) each clicked query-document pair is a 100% positive example; and (iii) each
click is solely due to semantic similarity. The authors relax these assumption and pro-
pose two generalized extensions to DSSM: GDSSM1 and GDSSM2. While DSSM
models the probability of a document being clicked given a query and the semantic
similarity between document and query, GDSSM1 uses more information in its loss
function, incorporating the number of users seeing and the proportion clicking for
each query-document pair. GDSSM2 conditions on lexical similarity in addition to
semantic similarity.

Interaction Based. Guo et al [78]’s Deep Relevance Matching Model (DRMM) is
one of the first NN IR models to show improvement over traditional IR models
(though the comparison is against bag-of-words approaches rather than term proxim-
ity baselines). The authors hypothesize that deep learning methods developed and/or
commonly applied in NLP for semantic matching may not be suited for ad-hoc
search, which is most concerned with relevance matching. They articulate three key
differences they perceive between semantic and relevance matching:

1. Semantic matching looks for semantic similarity between terms; relevance match-
ing puts more emphasis on exact matching.

2. Semantic matching is often concerned with how composition and grammar help
to determine meaning; varying importance among query terms is more crucial
than grammar in relevance matching.

3. Semantic matching compares two whole texts in their entirety; relevance match-
ing might only compare parts of a document to a query.

The raw inputs to the DRMM are term embeddings. The first layer consists of match-
ing histograms of each query term’s cosine similarity scores with each of the doc-
ument terms. On top of this histogram layer is an NN outputting a single node for
each query term. These outputs are multiplied by query term importance weights cal-
culated by a term gating network and then summed to produce the final predicted

Neural Information Retrieval: At the End of the Early Years 31

matching score for the query/document pair. The whole network is trained using
a margin ranking loss function. Ad-hoc search experiments are reported on TREC
Robust04 and ClueWeb09-Cat-B. Baselines include: (i) traditional retrieval models
such as BM25 and query likelihood; (ii) representation-focused NN models, includ-
ing DSSM [89] and C-DSSM [176] (indexing titles vs. full documents), ARC-I [88];
and (iii) interaction-focused NN models, such as ARC-II [88] and MatchPyramid
[159]. OOV terms are represented by random vectors (as in [95]), effectively allow-
ing only exact matching. Results show that as the CBOW dimension increases (50,
100, 300 and 500), the performance of DRRM first increases then slightly drops.
DRRM using IDF and Log-Count Histogram (LCH) also significantly outperforms
all baselines. In addition, none of the representation-focused and interaction-focused
baselines are competitive with traditional retrieval models, supporting the authors’
hypothesis that deep matching models focused on semantic matching may not be
well-suited to ad-hoc search.

5.1.3 Learn to predict

Ai et al [1, 2] investigate the use of the PV-DBOW model as a document language
model for retrieval. Three shortcomings of the PV-DBOW model are identified and
an extended Paragraph Vector (PV) model is proposed with remedies for these short-
comings. First, the PV-DBOW model is found to be biased towards short documents
due to overfitting in training and the training objective is updated with L2 regular-
ization. Secondly, the PV-DBOW model trained with NEG implicitly weights terms
with respect to Inverse Corpus Frequencies (ICF) which has been shown to be in-
ferior to Inverse Document Frequency (IDF) in [166]. A document frequency based
negative sampling strategy, which converts the problem into factorization of a shifted
TF-IDF matrix, is adopted. Thirdly, the two layer PV-DBOW architecture depicted in
Figure 11a is introduced since word substitution relations, such as the relation in car-
vehicle, underground-subway pairs, are not captured by PV-DBOW. The Extended
Paragraph Vector (EPV) is evaluated in re-ranking the set of top 2,000 documents re-
trieved by a query likelihood retrieval function. Document language models based on
EPV and LDA are compared on TREC Robust04 and GOV2 data sets. An EPV-based
model yields higher effectiveness scores than the LDA-based model.

The Hierarchical Document Vector (HDV) [58] model extends the PV-DM model
to predict not only words in a document but also its temporal neighbors in a document
stream. The architecture of this model is depicted in Figure 11b with a word context
and document context size of five. There, w1, w2, w3, w4, w5 represent a sample
context of words from the input paragraph; p1, p2, p3, p4, p5 represent a set of doc-
uments that occur in the same context. In HDV, the content of the documents in the
temporal context also contributes to the document representation. Similar to PV-DM,
the words and documents are mapped to d-dimensional embedding vectors. Djuric
et al [58] point out that words and documents are embedded in the same space and
this makes the model useful for both recommendation and retrieval tasks including
document retrieval, document recommendation, document tag recommendation and
keyword suggestion. Given a keyword, titles of similar documents in the embedding
space are presented to give an idea of the effectiveness of the model on the ad-hoc

32 Kezban Dilek Onal et al.

w1 w2 w4 w5

w3

p

D-Lookup

E-Lookup

(a) Two Layer PV-DBOW [1].

w1 w2 w4 w5

w3p1 p2 p4 p5

E-Lookup

p3

D-Lookup

(b) HDV [58] (and context-content2vec [76, Section 8.2]).

Fig. 11: Learn to predict context models for document retrieval.

retrieval task. However, a quantitative evaluation is not provided for the document
retrieval and keyword suggestion tasks.

5.1.4 Learn to generate

Lioma et al [116] ask whether it is possible to generate relevant documents given
a query. A character level LSTM network is optimized to generate a synthetic doc-
ument. The network is fed with a sequence of words constructed by concatenating
the query and context windows around query terms in all relevant documents for
the query. For each query, a separate model is generated and a synthetic document
is generated for the same query with the learned model. The synthetic document
was evaluated in a crowdsourcing setting. Users are provided with four word clouds
that belong to three known relevant documents and the synthetic document. Each
word cloud is built by selection of top frequent terms from the document. Users are
asked to select the most relevant word cloud. Author report that the word cloud of the
synthetic document ranked the first or second for most of the queries. Experiments
were performed on the TREC Disks 4, 5 test collection with title-only queries from
TREC 6, 7, 8.

Neural Information Retrieval: At the End of the Early Years 33

5.2 Query re-weighting

5.2.1 Aggregate

Implicit Palakodety and Callan [155]’s work on query expansion is based on word
embeddings; although originally proposed for result merging in federated web search,
we note it here since it introduces the idea of an importance vector in the query re-
weighting method in [222]. Palakodety and Callan [155] represent a query by the
mean vector of query term embeddings and k-nearest neighbors of the query vector
are selected to expand the query. Expansion terms are re-weighted with respect to
their distance to the query vector. A query term that is more distant to the query vec-
tor is assumed to contain more information and is assigned a higher weight. Query
re-weighting is modelled as a linear regression problem from importance vectors to
term weights in [222]. The importance vector, which is the offset between the query
vector and the term vector, is used as the feature vector for the query term. A lin-
ear regression model is trained using the ground-truth term weights computed by
term recall weights which is the ratio of relevant documents that contain the query
term t to the total number of relevant documents to the query q. Weighted queries
based on a learned regression model are evaluated in a retrieval setting and compared
against the LM and BM-25 models using the data sets ROBUST04, WT10g, GOV2,
ClueWeb09B. Two variants of the model, DeepTR-BOW and DeepTR-SD, are com-
pared against unweighted queries, sequential dependency models and weighted se-
quential dependency models. Statistically significant improvements are observed at
high precision levels and throughout the rankings compared to the first two methods.

5.3 Query expansion

5.3.1 Aggregate

Explicit. ALMasri et al [3] propose a heuristic method VEXP for term-by-term query
expansion using embedding vectors. For each query term, the most similar terms in
the embedding space are added to the query. Expansion terms are weighted in pro-
portion to their frequency in the expanded query. Experiments with ad-hoc search use
Indri on four CLEF medical test collections: Image2010-2012 (short documents and
queries, text-only) and Case2011 (long documents and queries). Baselines include
pseudo-relevance feedback [102] and mutual information. They evaluate both CBOW
and Skip-gram word2vec embeddings (using default dimensionality and context
window settings) but present only Skip-gram results, noting “there was no big differ-
ence in retrieval performance between the two.” The authors consider adding a fixed
number of 1–10 expansion terms per query term and also compare two smoothing
methods: linear Jelineck-Mercer vs. Dirichlet. Results show VEXP achieves higher
Mean Average Precision (MAP) than other methods.

Roy et al [169] propose a set of query expansion methods, based on selecting k
nearest neighbors of the query terms in the word embedding space and ranking these
terms with respect to their similarity to the whole query. For each nearest neighbor,

34 Kezban Dilek Onal et al.

they calculate the average cosine similarity vs. all query terms, selecting the top-K
terms according to average cosine score. The second approach (reduces the vocab-
ulary space considered by k-NN by only considering terms appearing in the top M
pseudo-relevant documents retrieved by the query. In the third approach, an iterative
(and computationally expensive) pruning strategy is applied to reduce the number of
nearest neighbors, assuming that nearest neighbors are similar to one another. All ex-
pansion methods yielded lower effectiveness scores than a statistical co-occurrence
based feedback method, in experiments with the TREC 6, 7 and 8 and TREC Robust
data set and the LM with Jelinek Mercer smoothing as the retrieval function.

Amer et al [5] investigate word embeddings for personalized query expansion in
the domain of social book search.4 While personalized query expansion is not new
[32, 37], use of word embeddings for personalization is novel. The proposed method
consists of three steps: user modeling, term filtering and selection of expansion terms.
A user is modeled as a collection of documents, and query terms are filtered to remove
adjectives, which may lead to noisy expansion terms. For each remaining query term,
similar to Roy et al [169]’s k-NN approach, the top-K most similar terms are selected
based on cosine similarity in the embedding space. Evaluation on the social book
search task compares word2vec trained on personalized vs. non-personalized train-
ing sets. However, results show that expansion via word embeddings strictly hurts
performance vs. no expansion at all, in contrast to [144, 169]. This may stem from
training word2vec embeddings only on social book search documents. Results fur-
ther suggest that personalized query expansion does not provide improvements over
non-personalized query expansion using word embedding. The authors postulate that
sparse training data for personalization is the main problem here.

Rekabsaz et al [164] recommend choosing similar terms based on a global simi-
larity threshold rather than by k-NN because some terms should naturally have more
similar terms than others. They choose the threshold by setting it such that for any
term, the expected number of related terms within the threshold is equal to the average
number of synonyms over all words in the language. This method avoids having to
constrain or prune the k-NN technique as in [169]. They use multiple initializations of
the word2vec Skip-gram model to produce a probability distribution used to calcu-
late the expected cosine similarity, making the measure more robust against noise. Ex-
periments on TREC 6–8 and HARD 2005 incorporate this threshold-setting method
into a translation language model [21] for ad-hoc retrieval and compare against both
a language model baseline and a translation language model that uses k-NN to select
similar words. The threshold-based translation language model achieves the highest
Mean Average Precision (MAP).

Implicit. In [57, 212], word embeddings are used for defining a new query language
model (QLM). A QLM specifies a probability distribution p(w | q) over all terms
in the vocabulary. In query expansion with language modeling, the top m terms w
that have the highest p(w | q) value are selected as expansion terms [33]. Diaz et al
[57], propose a query expansion language model based on word embeddings learned
from topic-constrained corpora. When word embeddings are learned from a topically-

4 http://social-book-search.humanities.uva.nl

Neural Information Retrieval: At the End of the Early Years 35

unconstrained corpora, they can be very general. Therefore, a query language model
is defined based on word embeddings learned using a subset of documents sampled
from a multinomial created by applying softmax on KL divergence scores of all doc-
uments in the corpus. The original query language model is interpolated with the
query expansion language model which is defined by weights of terms computed by
the UUT q where U is the |V |×d dimensional embedding matrix and q is the |V |×1
dimensional term matrix. Locally-trained embeddings are compared against global
embeddings on TREC12, Robust and ClueWeb 2009 Category B Web corpus. Lo-
cal embeddings are shown to yield higher NDCG@10 scores. Besides the local and
global option, the authors also investigate the effect of using the target corpus ver-
sus an external corpus for learning word embeddings. A topically-constrained set of
documents sampled from a general-purpose large corpus achieves the highest effec-
tiveness scores.

Zamani and Croft [212] propose two separate QLMs and an extended relevance
model [102] based on word embeddings. In the first QLM, p(w | q) is computed by
multiplying likelihood scores p(w | t) given individual query terms whereas in the
second QLM, p(w | q) is estimated by an additive model over p(w | t) scores. The
p(w | t) scores are based on similarity of word embeddings. For measuring simi-
larity of embeddings, a sigmoid function is applied on top of the cosine similarity
in order to increase the discriminative ability. The reason for this choice is the ob-
servation that the cosine similarity of the 1,000-th closest neighbor to a word is not
much lower than the similarity of the first closest neighbor. Besides the QLMs, a
relevance model [102], which computes a feedback query language model using em-
bedding similarities in addition to term matching, is introduced. The proposed query
language models are compared to Maximum Likelihood Estimation (MLE), GLM
[3, 65] on AP, Robust and GOV2 collections from TREC. The first QLM is shown to
be more effective in query expansion experiments. Regarding the PRF experiments,
the embedding based relevance model combined with expansion using the first QLM
produces the highest scores.

Zamani and Croft [213] develop a method for query embedding based on the
embedding vectors of its individual words. The intuitiion is that a good query vec-
tor should yield a probability distribution P (w | q) = δ(w, q)/Z induced over the
vocabulary terms similar to the query language model probability distribution (as
measured by the KL Divergence). Here, w is the embedding vector of the word, q
is the query embedding vector, δ(w, q) is the similarity between the two embedding
vectors, and Z is a normalization constant. For similarity, they use the softmax and
sigmoid transformations of cosine similarity. They show that the common heuristic
of averaging individual query term vectors to induce the overall query embedding is
actually a special case of their proposed theoretical framework for the case when vec-
tor similarity is measured by softmax and the query language model is estimated by
maximum likelihood. Experiments with ad-hoc search using Galago are reported for
three TREC test collections: AP, Robust04, and GOV2, using keyword TREC title
queries. Word embeddings are induced by GloVe [161]. The GloVe are trained from a
6 billion token collection (Wikipedia 2014 plus Gigawords 5). Two different methods
are used for estimating the query language model: via Pseudo Relevance Feedback
(PRF) [102], which they refer to as pseudo query vector (PQV), and via maximum-

36 Kezban Dilek Onal et al.

likelihood estimation (MLE). Two methods are used for calculating similarity: soft-
max and sigmoid. Softmax is easy to use because of the closed form solution, but the
sigmoid function consistently showed better performance, likely due to the flexibil-
ity provided by its two free parameters. Although PQV shows higher mean average
precision, precision of top documents appears to suffer. Results also emphasize the
importance of training data selection. Embeddings trained from the same domain as
the documents being searched perform better than embeddings trained on a larger
dataset from a different domain.

5.3.2 Learn

5.3.3 Learn to autoencode

Gupta et al [80] explore query expansion in mixed-script IR (MSIR), a task in which
documents and queries in non-Roman written languages can contain both native and
transliterated scripts together. Stemming from the observation that transliterations
generally use Roman letters in such a way as to preserve the original-language pro-
nunciation, the authors develop a method to convert both scripts into a bilingual em-
bedding space. Therefore, they convert terms into feature vectors of the count of
each Roman letter. An auto-encoder is then trained for query expansion by feeding
in the concatenated native term feature vector and transliterated term feature vec-
tor. The output is the low-dimensional embedding in the abstract space. The training
of the autoencoder includes greedy layer-wise pretraining and fine-tuning through
backpropagation. Experiments are conducted on shared task data from FIRE (see Ap-
pendix B.2). Results suggest that their method significantly outperforms other state-
of-the-art methods. Source code for the model is shared online (see Appendix B.4).

5.3.4 Learn to match

Sordoni et al [181] propose a supervised Quantum Entropy Minimization (QEM) ap-
proach for finding semantic representations of concepts, such as words or phrases, for
query expansion. The authors suggest that text sequences should not lie in the same
semantic space as single terms because their information content is higher. To this
end, concepts are embedded in rank-one matrices while queries and documents are
embedded as a mixture of rank-one matrices. This allows documents and queries to lie
in a larger space and carry more semantic information than concepts, thereby achiev-
ing greater semantic resolution. For learning parameters of density matrices, QEM’s
gradient updates are a refinement of updates in both Bai et al [11]’s Supervised Se-
mantic Indexing (SSI) and Rocchio [167]; a query concept embedding moves toward
the embeddings of relevant documents’ concepts and away from the embeddings of
non-relevant documents’ concepts. This has the effect of selecting which document
concepts the query concept should be aligned with and also leads to a refinement of
Rocchio: the update direction for query expansion is obtained by weighting relevant
and non-relevant documents according to their similarity to the query. Due to lack of
public query logs, QEM is trained on Wikipedia anchor logs [49]. Experiments con-
ducted on ClueWeb09-Cat-B with TREC 2010-2012 Web Track topics show QEM

Neural Information Retrieval: At the End of the Early Years 37

outperforms Gao et al [68]’s concept translation model (CTM) (statistically signif-
icant differences), and SSI (occasionally statistically significant differences). QEM
notably achieves improved precision at top-ranks. Also notable is QEM’s ability to
find useful expansion terms for longer queries due to higher semantic resolution. Ad-
ditional preliminary experiments with Weston et al [195]’s Weighted Approximate-
Rank Pairwise loss yields further improvements for QEM over baselines.

5.4 Result diversification

5.4.1 Aggregate

Explicit. Onal et al [153] propose to utilize GloVe embeddings in order to overcome
the vocabulary gap between various TTU pairs, such as tweet-tweet, query-tweet and
aspect-tweet pairs, in tweet search result diversification. Diversification algorithms
rely on textual similarity functions in order to select the optimal set of results that
maximizes both novelty and relevance. Exact matching functions fail to distinguish
the aspects expressed with very short textual content. TTUs are expanded with k
nearest neighbors of the terms in the GloVe embedding space. As similarity functions
cannot distinguish details at the aspect level, marginal improvement are not observed
in α-NDCG scores when explicit and implicit diversification algorithms are run with
the expanded TTUs.

5.4.2 Learn

Learn to match. Prior state-of-the-art methods for diversifying search results include
the Relational Learning-to-Rank framework (R-LTR) [224] and the Perceptron Algo-
rithm using Measures as Margins (PAMM) [199]. These prior methods either use a
heuristic ranking model based on a predefined document similarity function, or they
automatically learn a ranking model from predefined novelty features often based on
cosine similarity. In contrast, Xia et al [200] take automation a step further, using
Neural Tensor Networks (NTN) to learn the novelty features themselves. The NTN
architecture was first proposed to model the relationship between entities in a knowl-
edge graph via a bilinear tensor product [179]. The model here takes a document and
a set of other documents as input. The architecture uses a tensor layer, a max-pooling
layer, and a linear layer to output a document novelty score. The NTN augmentations
of R-LTR and PAMM perform at least as well as those baselines, showing how the
NTN can remove the need for manual design of functions and features. It is not clear
yet whether using a full tensor network works much better than just using a single
slice of the tensor.

38 Kezban Dilek Onal et al.

5.5 Expertise retrieval

5.5.1 Learn

Learn to predict. Van Gysel et al [188] propose an unsupervised discriminative log-
linear model for the retrieval of the authors with the most expertise, given a topic as
the query. Contextual relations to be used for training are derived from the author-
document relations. Authors split each document into n-grams and compute proba-
bility distribution of authors given an n-gram. The training objective is to optimize
the cross-entropy between the predicted distribution and the oracle distribution de-
rived from the contextual relations, over the collection of n-grams. The neural model
is a single layer neural network which takes a word as the input and predicts a proba-
bility distribution over the authors. The probability of an author given a sequence of
words is computed by the multiplication of the probability values given each word,
assuming conditional independence of expertise given words. Word embeddings and
the author embeddings are learned jointly. The proposed log-linear model is shown to
outperform the state-of-the-art vector space-based entity ranking and language mod-
eling approaches, in terms of precision, in experiments on the TREC Enterprise Track
2005–2008 data sets and a University of Tilburg dataset. The authors note the need
for improving the scalability of the model with respect to the number of authors.

5.6 Product Search

5.6.1 Learn

Learn to match. Van Gysel et al [187] describe a Latent Semantic Entities (LSE)
method for learning a latent space model for product entity retrieval. Products are
entities that are each associated with a text description accompanied by user reviews.
LSE is a discriminative model that predicts probability distributions over a collec-
tion of product entities given a descriptive text. The LSE model comprises a word
embedding matrix, an entity embedding matrix and a mapping from words to enti-
ties. Word embeddings and entity embeddings are learned jointly. Word embeddings
and entity embeddings have different dimensionality. For a given textual description,
embedding of the predicted entity is computed by a hidden neural network over the
average of word embeddings. The objective function maximizes similarity between
the predicted and actual entity embeddings while minimizing similarity between the
predicted embeddings and randomly sampled negative instances. For scalability, NCE
is used to approximate the probability distribution over the products. Although this
work is classified as Learn to match due to the training objective, embeddings for a
fixed collection products are learned. As an outlier in the Learn to match category, the
input to the model is not a pair of textual units. One element of the pair is a product-
id. Experiments are conducted on Amazon product data, comparing NDCG scores
against three baseline methods including LSI, Latent Dirichlet Allocation (LDA),
and word2vec. In all four product domains from the dataset, LSE outperforms
baselines over all tested entity dimensionality sizes. LSE is also found to provide

Neural Information Retrieval: At the End of the Early Years 39

useful additional features to a Query-likelihood Language Model in learning-to-rank
experiments.

6 Query Tasks

6.1 Query auto completion

6.1.1 Aggregate

Implicit. The work by Cai and de Rijke [29] on query auto completion introduces se-
mantic features computed using Skip-Gram embeddings, for learning to rank query
auto completion candidates. Query similarity computed by sum and maximum of the
embedding similarity of term-pairs from queries are used as two separate features.
The maximal embedding similarity of term pairs is found to be the most important
feature in a diverse feature set including popularity-based features, a lexical similar-
ity and another semantic similarity feature based on co-occurrence of term pairs in
sessions.

6.1.2 Learn

Learn to match. The Convolutional Latent Semantic Model (CLSM) has been used to
learn distributed representations of query reformulations [143] and of queries [144].
In both studies, CLSM representations are used to build additional features in an
existing learning to rank framework for query auto completion.

Mitra [143] learns embedding vectors for query reformulation based on query
logs, representing query reformulation as a vector using CLSM. In [143], a CLSM
model is trained on query pairs that are observed in succession in search logs. This
work provides an analysis of CLSM vectors for queries similar to the word embed-
ding space analysis in [141]. Mitra [143] found that offsets between CLSM query vec-
tors can represent intent transition patterns. To illustrate, the nearest neighbor query
of the vector computed by vector(university of washington) − vector(seattle) +
vector(chicago) is found to be vector(university of chicago). Besides, the offset
of the vectors for university of washington and seattle is similar to the offset of
the vectors for chicago state university and chicago. Motivated by this feature of
the CLSM vectors, query reformulations are represented as the offset vector from the
source query to target query [143]. Clustering of query reformulations represented
by the offset vectors yields clusters that contain pairs with similar intent transitions.
For instance, the query reformulations in which there is an intent jump like avatar
dragons→ facebook, are observed grouped in a cluster. Two sets of features are then
developed. The first feature set captures topical similarity via cosine similarity be-
tween the candidate embedding vector and embedding vectors of some past number
of queries in the same session. The second set of reformulation features captures the
difference between the candidate embedding vector and that of the immediately pre-
ceding query. Other features used include non-contextual features, such as most popu-
lar completion, as well as contextual features, such as n-gram similarity features and

40 Kezban Dilek Onal et al.

pairwise frequency features. LambdaMART [197] is trained on click-through data
and features. Results suggest that embedding features give considerable improvement
over Most Probable Completion (MPC) [13], in addition to other models lacking the
embedding-based features.

Whereas popularity query auto completion methods perform well for head queries
having abundant training data, prior methods often fail to recommend completions
for tail queries having less usual prefixes, including both probabilistic algorithms
[13, 31, 177] and learning-based QAC approaches [29, 91]. To address this, Mitra
and Craswell [144] develop a query auto-completion procedure for such rare prefixes
which enables query auto completion even for query prefixes never seen in training.
The authors mine the most popular query suffixes (e.g., n-grams that appear at the
end of a query) and append them to the user query prefixes, thus generating possi-
ble synthetic candidate solutions. To recommend possible query expansion, they use
LambdaMART [197] with two sets of ranking features. The first feature set is the
frequency of query n-grams in the search log. The second feature set is generated by
training CLSM on the prefix-suffix dataset, sampling queries in the search logs and
segmenting each query at every possible word boundary. Results on the AOL search
log show significant improvements over MPC [13]. The authors also find n-gram
features to be more important than CLSM features in contributing to overall model
performance.

6.2 Query suggestions

6.2.1 Learn to generate

We know of no work using RNNs for query suggestion prior to Hierarchical Recur-
rent Encoder Decoder (HRED) by Sordoni et al [182] that trains a hierarchical GRU
model to generate context-aware suggestions. They first use a GRU layer to encode
the queries in each session into vector representations, then build another GRU layer
on sequences of query vectors in a session and encode the session into a vector rep-
resentation. The model learns its parameters by maximizing the log-likelihood of ob-
served query sessions. To generate query suggestions, the model uses a GRU decoder
on each word conditioned on both the previous words generated and the previous
queries in the same session. The model estimates the likelihood of a query suggestion
given the previous query. A learning-to-rank system is trained to rank query sugges-
tions, incorporating the likelihood score of each suggestion as a feature. Results on
the AOL query log show that the proposed approach outperforms several baselines
that use only hand-crafted features. The model is also seen to be robust when the pre-
vious query is noisy. The authors then conduct a user study to evaluate the synthetic
suggestions generated by the HRED model. Users are asked to classify the suggested
queries as useful, somewhat useful, not useful categories. A total of 64% of the queries
generated by the HRED model was found to be either useful or somewhat useful by
users. This score is higher than all the other baselines where the highest score for
“useful or somewhat useful” is about 45%. Because the model can generate synthetic
queries, it can effectively handle long tail queries. However, only previous queries

Neural Information Retrieval: At the End of the Early Years 41

from the same session are used to provide the contextual query suggestion; the au-
thors do not utilize click-through data from previous sessions. Because click-through
data provides important feedback for synthetic query suggestions, incorporating such
click-through data from previous sessions represents a possible direction for future
work.

6.3 Query classification

6.3.1 Aggregate

Explicit. Using data from the KDD Cup 2005 Task,5 Zamani and Croft [213] propose
an embedding method for categorizing queries. See Section 5.1.1 for a description of
Zamani and Croft [213]’s overall method and results for ad-hoc search. For query
classification, given an item from the training data query-category, the authors first
calculate the centroid vector of all query embedding vectors under a category. Then
for a test query, they use the query embedding form and calculate the distance to
the K nearest neighbor centroid vector. Finally, they use a softmax function over the
set of calculated distances to determine the final set of categories for the test query.
Because only embedding-based baselines are included in the evaluation, it is unclear
how the proposed approach would perform vs. traditional IR models.

6.4 Proactive search

6.4.1 Learn to generate

In the only work we know of investigating Neural IR for proactive retrieval, Luukko-
nen et al [123] propose LSTM-based text prediction for query expansion. Intended to
better support proactive intelligent agents such as Apple’s Siri, Ok Google, etc., the
LSTM is used to generate sequences of words based on all previous words written by
users. A beam search is used to prune out low probability sequences. Finally, words
remaining in the pruned tree are used for query expansion. They evaluate their method
on the abstracts of the Computer Science branch of the arXiv preprint database, down-
laoded on October 28, 2015. Experimental results show that the proposed method can
proactively generate relevant resources and improve retrieval precision. The authors
provide several possible future directions, such as using the model to automatically
suggest different continuations for user text as it is written, as done in the Reactive
Keyboard [50] and akin to query auto completion in search engines. User studies
are also needed to test the system’s effectiveness in the context of users’ real-world
tasks.

5 http://www.kdd.org/kdd-cup/view/kdd-cup-2005

42 Kezban Dilek Onal et al.

7 Question Answering

7.1 Answer sentence selection

7.1.1 Learn to match

Methods proposed in this section all evaluate on Wang et al [192]’s dataset derived
from TREC QA 8–13. Wang and Nyberg [191] use a stacked bi-directional LSTM
(BLSTM) to read a question and answer sequentially and then combine the hidden
memory vectors from LSTMs of both question and answer. They use mean, sum and
max-pooling as features. This model needs to incorporate key-word matching as a
feature to outperform previous approaches that do not utilize deep learning. They use
BM25 as the key-word matching feature and use Gradient boosted regression tree
(GBDT) [64] to combine it with the LSTM model.

To rank pairs of short texts, Severyn and Moschitti [174] propose a Convolutional
Deep Neural Network (CDNN). Their deep learning architecture has 2 stages. The
first stage is a sentence embedding model using a CNN to embed question and answer
sentences into intermediate representative vectors, which are used to compute their
similarity. The second stage is a NN ranking model whose features include interme-
diate representative sentence vectors, similarity score, and some additional features
such as word overlap between sentences. Results show improvements of about 3.5%
in MAP vs. results reported by Yu et al [211], in which a CNN is used followed by
logistic regression (LR) to rank QA pairs. The authors attribute this improvement to
the larger width (of 5) of the convolutional filter in their CNN for capturing long term
dependencies, vs. the unigram and bigram models used by Yu et al [211]. Beyond the
similarity score, their second stage NN also takes intermediate question and answer
representations as features to constitute a much richer representation than that of Yu
et al [211].

Yang et al [205]’s approach starts by considering the interaction between question
and answer at the word embedding level. They first build a question-answer interac-
tion matrix using pre-trained embeddings. They then use a novel value-shared weight
CNN layer (instead of a position-shared CNN) in order to induce a hidden layer. The
motivation for this is that different matching ranges between a question term and an-
swer will influence the later ranking score differently. After this, they incorporate an
attention network for each question term to explicitly encode the importance of each
question term and produce the final ranking score. They rank the answer sentences
based on the predicted score and calculate MAP and MRR. Whereas Severyn and
Moschitti [174] and Wang and Nyberg [191] need to incorporate additional features
in order to achieve comparative performance, Yang et al [205] do not require any
feature engineering.

Suggu et al [183] propose a Deep Feature Fusion Network (DFFN) to exploit
both hand-crafted features (HCF) and deep learning based systems for Answer Ques-
tion Prediction. Specifically, query/answer sentence representations are embedded
using a CNN. A single feature vector of 601 dimensions serves as input to a sec-
ond stage fully-connected NN. Features include sentence representations, HCF (e.g.,
TagMe, Google Cross-Lingual Dictionary (GCD), and Named Entities (NEs)), sim-

Neural Information Retrieval: At the End of the Early Years 43

ilarity measures between questions and answers, and metadata such as an answer
author’s reputation score. The output of the second stage NN is a score predicting
the answer quality. They compare their approach to the top two best performing HCF
based systems from SemEval 2015 and a pure deep learning system. For SemEval
2016, DFFN was compared with their corresponding top two best performing sys-
tem. Results show that DFFN performs better than the top systems across all metrics
(MAP, F1 and accuracy) in both SemEval 2015 and 2016 datasets. The authors at-
tribute this to fusing the features learned from deep learning and HCF, since some
important features are hard to learn automatically. As an example, question and an-
swer often consists of several NEs along with variants, which are hard to capture
using deep learning. However, NEs can be extracted from QA and their similarity
used as a feature. Their use of HCF was also motivated by the many available sim-
ilarity resources, such as Wikipedia, GCD, and click-through data, which could be
leveraged to capture richer syntactic and semantic similarities between QA pairs.

7.2 Conversational agents

7.2.1 Learn

Learn to match. An automatic conversation response system called Deep Learning-
to-Respond (DL2R) is proposed by Yan et al [203]. They train and test on 10 million
posting-reply pairs of human conversation web data from various sources, includ-
ing microblog websites, forums, Community Question Answering (CQA) bases, etc.
For a given query they reformulate it using other contextual information and retrieve
the most likely candidate reply. They model the total score as a function of three
scores: query-reply, query-posting, and query-context, each fed into a neural network
consisting of bi-directional LSTM RNN layers, convolution and pooling layers, and
several feed-forward layers. The strength of DL2R comes from the incorporation of
reply, posting, and context with the query.

8 Sponsored Search

8.1 Learn to match

Azimi et al [8] use DSSM represetantations for ad keyword re-writing. In paid search,
each ad is associated with a set of keywords called bided keywords. The ads are
ranked against a query and the ads at high rank are displayed to the user. In order to
overcome the vocabulary mismatch between user queries and bided keywords, bided
keywords are replaced with more common keywords. A set of candidate keywords
are extracted from the set of documents returned by a search engine in response to the
bided keyword query. The DSSM model is leveraged to rank the candidate keywords
against the original keywords.

The Deep-Intent model proposed by Zhai et al [214, 215] comprises a Bidirec-
tional Recurrent Neural Network (BRNN) combined with an attention module as the
SCN. The attention module, first introduced in [10] for neural machine translation,

44 Kezban Dilek Onal et al.

is referred to as attention pooling layer. This is the first work that employs an at-
tention module for a web search task. A recurrent neural network takes a sequence
of words and generates a sequence of distributed representations, so-called context-
vectors, aligned with each word. Each context vector encodes the semantics of the
context from the start to the corresponding word. A Bidirectional Recurrent Neural
Network (BRNN) processes the input word sequence in both forward and backward
directions.

Context vectors generated by a BRNN encode the context after and before the
associated word. The pooling strategy is merging the context vectors vectors into a
single vector that encodes the semantics of the whole sequence. The sequence vec-
tor is assigned the last context vector in last pooling, whereas an element-wise max
operation is applied on context vectors in max-pooling. In attention pooling, the se-
quence vector is computed by a weighted sum of context vectors where the weights
are determined by the attention module. The attention module takes a sequence of
context vectors and outputs a weight for each vector. The similarity score between
a query and an ad is obtained by the dot product of their distributed representations.
Similar query-ad pairs for training are extracted from the click logs. Query-ad pairs
that have a click are selected as training samples and for each such sample, a ran-
domly selected set of query-ad pairs (without click) are used as negative samples.
Distributed representations are evaluated on click-logs from a product ad search en-
gine with 966K pairs manually labeled by human judges. In the experiments, models
that are built from different choices of RNN type (RNN, Bidirectional RNN, LSTM
and LSTM-RNN) and pooling strategy (max-pooling, last pooling and attention pool-
ing) are compared. The attention layer provides a significant gain in the AUC (area-
under-curve of the receiver operating characteristic) scores when used with RNN and
BRNN whereas it performs on a par with last pooling when used with LSTM-based
networks. This can be attributed to the power of LSTM units for capturing long-term
contextual relations. Besides the evaluation of distributed representations for match-
ing, the attention scores are used to extract a subset of query words. Words that have
the highest attention scores are selected to rewrite the query.

8.2 Learn to predict

Grbovic et al [75] present a pair of Learn to predict models in [75, 76]. In [75], Gr-
bovic et al propose query2vec, a two-layer architecture, where the upper layer
models the temporal context of a query session using a Skip-gram model, and the
lower layer models word sequences within a query using word2vec CBOW. They
also introduce two incremental models: ad-query2vec, which incorporates the
learning of ad click vectors in the upper layer by inserting them into query sequences
after queries that occurred immediately prior to an ad click; and directed ad-query2vec,
which uses past queries as context for a directed language model in the upper layer.
The models are trained using 12 billion sessions collected on Yahoo search and eval-
uated offline using historical activity logs, where success is measured by the click-
through rate of ads served. All three query2vec models show improvement over

Neural Information Retrieval: At the End of the Early Years 45

sponsored keyword lists and search retargeting using word2vec and query flow
graph.

In their subsequent, longer study, Grbovic et al [76] propose a method to train
context and content-aware word embeddings. The first proposal is context2vec.
It treats a search session as a sentence and each query from the session as a word from
the sentence. It uses word2vec’s Skip-gram model. Queries with similar context
will result in similar embeddings. The second model is content2vec. This method
is similar to Le and Mikolov [103]’s PV in that it uses the query as a paragraph to pre-
dict the word in its context. The third model, context-content2vec, similar to
their earlier query2vec, combines context2vec and content2vec to build
a two-layer model which jointly considers the query session context and the query
context. The context of the query is defined both by its content and other queries in
the same session. The models are trained on Yahoo search logs that contain 12 billion
sessions and embeddings for approximately 45 million queries are learned. Learned
query embeddings are leveraged for rewriting queries in order to improve search re-
targeting. The original query is expanded with its k nearest neighbor queries in the
query embedding space. The learned model is evaluated on TREC Web Track 2009–
2013 queries and an in-house data set from Yahoo. For queries in the TREC data
set, the query rewrites obtained by the proposed models are editorially judged. The
PV-DM model that only predicts context yields lower editorial grades than the Query
Flow Graph (QFG) baseline. Rewrites by context2vec and context-content2vec em-
beddings outperform the baseline. The rewrites by the context-content2vecad model,
which extends context-content2vec by adding the ads and links clicked in the same
session to the TTU context, are assigned the highest editorial grades on average.

9 Similar Item Retrieval

9.1 Related document search

9.1.1 Aggregate

Explicit. Kusner et al [101] propose the Word Mover’s Distance (WMD) for comput-
ing distances between two documents. WMD is defined as the minimum cumulative
distance that all words in the first document of the pair need to travel to exactly match
the other document of the pair. The distance between two words is computed by the
Euclidean distance in the word2vec space. Authors evaluate the WMD metric on
8 supervised document datasets: BBC sports articles, tweets labeled with sentiments,
recipe procedure descriptions, medical abstracts with different disease groups, aca-
demic papers with publisher names, news datasets with different topics, Amazon re-
views with different category products. They compare their method with baselines
including bag-of-words, TF-IDF, BM25 Okapi, LSI, LDA and so on. Their model
outperforms these baselines.

Kim et al [96] propose another version of WMD specific to query-document sim-
ilarity. The high computational cost of WMD is tackled by mapping queries to docu-
ments using a word embedding model trained on a document set. They make several

46 Kezban Dilek Onal et al.

changes to the original WMD methods: changing the weight of term by introducing
inverse document frequency, and changing the original dissimilarity measure to co-
sine similarity. However, they do not provide any comparison vs. WMD as a baseline.

9.1.2 Learn

Learn to match. Semantic hashing is proposed by Salakhutdinov and Hinton [171] to
map semantically similar documents near to one another in hashing space, facilitating
easy search for similar documents. Multiple layers of Restricted Boltzmann Machines
(RBMs) are used to learn the semantic structure of documents. The final layer is
used as a hash code that compactly represents the document. The lowest layer is
simply word-count data and is modeled by the Poisson distribution. The hidden layers
are binary vectors of lower dimensions. The deep generative model is learned by
first pre-training the RBMs one layer at a time (from bottom to top). The network
is then “unrolled”, i.e., the layers are turned upside down and stacked on top of the
current network. The final result is an auto-encoder that learns a low-dimensional
hash code from the word-count vector and uses that hash code to reconstruct the
original word-count vector. The auto-encoder is then fine-tuned by back-propagation.
Results show that semantic hashing is much faster than locality sensitive hashing
[6, 51] and can find semantically similar documents in time independent of document
collection size. However, semantic hashing difficult optimization procedures and a
slow training mechanism, reducing applicability to large-scale tasks [118].

Learn to predict Djuric et al [58] point out use of the HDV model, reviewed in Sec-
tion 5.1.3, for exploring similar documents in a document collection.

Le and Mikolov [103] assess vectors obtained by averaging PV-DM and PV-DBOW
vectors (see Section 3.3.6 for details of PV) on snippet retrieval tasks. The snippet re-
trieval experiments are performed on a dataset of triplets created using snippets of the
top 10 results retrieved by a search engine, for a set of 1 million queries. Each triplet
is composed of two relevant snippets for a query and a randomly selected irrelevant
snippet from the collection. Cosine similarity between paragraph vectors is shown to
be an effective similarity metric for distinguishing similar snippets in such triplets.
Dai et al [48] show that paragraph vectors outperform the vector representations ob-
tained by LDA [22], average of word embeddings and tf-idf weighted one-hot vector
representations, on a set of document triplets constructed with the same strategy in
[103], using Wikipedia and arXiv documents.

9.2 Detecting text reuse

9.2.1 Aggregate

Explicit. The goal of Zhang et al [216] is to efficiently retrieve passages that are se-
mantically similar to a query, making use of hashing methods on word vectors that
are learned in advance. Other than the given word vectors, no further deep learn-
ing is used. Like Clinchant and Perronnin [42] and Zhou et al [223], they adopt

Neural Information Retrieval: At the End of the Early Years 47

the Fisher Kernel framework to convert variable-size concatenations of word embed-
dings to fixed length. However, this resulting fixed-length Fisher vector is very high-
dimensional and dense, so they test various state-of-the-art hashing methods (e.g.,
Spectral Hashing [194] and SimHash [35]) for reducing the Fisher vector to a lower-
dimensional binary vector. Experiments are conducted on six collections including
TIPSTER (Volumes 1–3), ClueWeb09-Cat-B, Tweets2011, SogouT 2.0, Baidu Zhi-
dao, and Sina Weibo, with some sentences manually annotated for semantic simi-
larity. Hashing methods that use Fisher vector representations based on word em-
beddings achieve higher precision-recall curves than hashing methods without vector
representations and have comparable computational efficiency.

9.3 Similar question retrieval

9.3.1 Aggregate

Explicit. Learning of word embeddings coupled with category metadata for CQA is
proposed by Zhou et al [223]. They adopt word2vec’s Skip-gram model augmented
with category metadata from online questions, with category information encoding
the attributes of words in the question (see Zhang et al [217] for another example
of integrating categorical data with word embeddings). In this way, they group sim-
ilar words based on their categories. They incorporate the category constraint into
the original Skip-gram objective function. After the word embedding is learned, they
use Fisher kernel (FK) framework to convert the question into a fixed length vector
(similar to Clinchant and Perronnin [42] and Zhang et al [216]). To retrieve similar
questions, they use the dot product of FVs to calculate the semantic similarities. For
their experiments, Zhou et al [223] train word embeddings on Yahoo! Answers and
Baidu Zhidao for English and Chinese, respectively. Results show that the category
metadata powered model outperforms all the other baselines not using metadata. Fu-
ture work might include exploring how to utilize other metadata information, such as
user ratings, to train more powerful word embeddings.

9.3.2 Learn

Learn to match. Lei et al [107] address the similar question retrieval in CQA plat-
forms with a framework that applies Learn to match and Learn to generate in two
separate stages of training. In the pre-training phase, an encoder-decoder network that
generates the title of a question given title, body or merged title-body of the question,
is trained. The encoder network is based on gated (non-consecutive) convolutions.
Owing to the pre-training step, unsupervised question collection is utilized to tailor
task-specific word embeddings and learn a rough semantic compositionality function
for the questions. The encoder learned in the first step is used as the SCN for a train-
ing Learn to match model on the user-annotated similar question pairs. Evaluation is
done on the StackExchange AskUbuntu data set. Negative pairs are constructed by
selecting random questions from the collection. For the test set, similar pairs are an-
notated manually as the user-marked pairs are found to be noisy. In order to evaluate

48 Kezban Dilek Onal et al.

effectiveness, a set of questions retrieved by BM25 are ranked based on similarity
scores computed by the learned Learn to match model. Lei et al present a compre-
hensive set of experiments that analyse both the overall gain by pre-training and the
effect of the design choices such as the encoder neural network type, pooling strate-
gies and inclusion of question body. Highest effectiveness scores are achieved by the
combination of the gated convolutions, last-pooling and pre-training.

9.4 Recommendation

9.4.1 Aggregate

Explicit Manotumruksa et al [130] models user preferences using word embeddings
for the task of context-aware venue recommendations (CAVR). In CAVR, each user
can express a set of contextual aspects for their preference. Each aspect has multi-
ple contextual dimension term, with each term having a list of related term. The task
then is to rank a list of venues by measuring how well each of venue matches user’s
context preferences. It develops two approaches to model user-venue preferences and
context-venue preferences using word embedding. First, it infers a vector representa-
tion for each venue using the comments on the venue, and it models the user-venue
preferences using the rated venues’ vector representation in the user’s profile. Sec-
ond, it models each dimension of each aspect in the context-venue preferences by
identifying several most similar terms of that dimension term.

To evaluate their user-venue preferences model, Manotumruksa et al [130] firstly
train word embeddings using Skip-gram model on the venues’ comments dataset
from Foursquare. Then it calculates the cosine similarity between the vector repre-
sentation of venue and the user, and use it as a feature in the learning to rank system.
It conducts the experiment on TREC 2013 and 2014 Contextual Suggestion tracks,
and reports P@5 and MRR. The result shows the system with the proposed features
using word embedding outperforms those without using word embedding.

Then, to evaluate its context-aware preference model, Manotumruksa et al [130]
use cosine similarity between the venue and each of the contextual aspects as a fea-
ture in the ranking system. It also incorporates venue-dependent features and user-
venue preference features. This experiment on TREC 2015 Contextual Suggestion
task shows that the proposed new system outperforms the baseline that does not uti-
lize user information and their contextual preferences, and it also outperforms the top
performing system under P@5.

9.4.2 Learn

Learn to match. Gao et al [69] propose using DSSM for both automatic highlighting
of relevant keywords in documents and recommendation of alternative relevant doc-
uments based upon these keywords. They evaluate their framework based on what
they call interestingness tasks, derived from Wikipedia anchor text and web traffic
logs. They find that feeding DSSM derived features into a supervised classifier for

Neural Information Retrieval: At the End of the Early Years 49

recommendation offers state-of-the-art performance and is more effective than sim-
ply computing distance in the DSSM latent space. Future work could incorporate
complete user sessions, since prior browsing and interaction history recorded in the
session provide useful additional signals for predicting interestingness. This signal
might be modeled most easily by using an RNN.

10 Non Textual (or Behavioural)

Borisov et al [25] propose a distributed representation which captures the user infor-
mation need as sequence of vector states instead of traditional binary event used in
a probabilistic graphical model (PGM) based click model [40]. Existing PGM based
click models capture a user’s behavior as a sequence of observable and latent events.
However, one serious limitation of these click models is that the dependencies among
the sequence of the events are hand-crafted. The basic idea of Borisov et al’s proposed
model is as follows: they initialize their vector state with the initial user query and
then update the vector states based on the user interaction and the next document. For
transitioning from one state to another they define three mapping functions which
they learn from the training data using two different neural networks architectures:
RNN and LSTM. They perform their experimental analysis using Yandex (a major
commercial search engine in Russia) Relevance Prediction dataset6 on a user click
prediction task and a relevance prediction task. As a baseline they use the DBN,
DCM, CCM and UBM click models.7 As a performance metrics they have used per-
plexity and log-likelihood and for relevance prediction task they have use NDCG at
the 1, 3 , 5 and 10 level. Their experimental evidence shows that their proposed model
has better predictive power than all those baseline.

As a follow-up to [25], Borisov et al [24] focus on behavioral signals based on
times between user actions. The ability to accurately predict (i) click dwell time (i.e.,
time spent by a user on the landing page of a search result), and (ii) times from
submission of a query to the first/last click on the results and to the next query sub-
mission (if none of the results will be clicked) allows us to optimize search engines
for constructing result pages and suggesting query reformulations that minimize time
it takes users to satisfy their information needs. At the heart of the solution proposed
by the authors an LSTM is used to capture the contexts in which user actions take
place. The proposed context-aware time model is evaluated on four temporal predic-
tion tasks and a ranking task. The results show that the proposed context-aware time
model, which makes use of the context in which actions take place, provides a better
means to explain times between user actions than existing methods.

Predicting click-through rate (CTR) and conversion rate from categorical inputs
such as region, ad slot size, user agent, etc., is important in sponsored search. Zhang
et al [217] propose the first neural approach we know of to predict CTR for advertis-
ing. The authors develop two deep learning approaches to this problem, a Factoriza-
tion Machine supported Neural Network (FNN) and Sampling-based Neural Network
(SNN). The Factorization Machine is a non-linear model that can efficiently estimate

6 http://imat-relpred.yandex.ru/en/datasets
7 Implementations of all of these click models are available at https://github.com/markovi/PyClick

50 Kezban Dilek Onal et al.

feature interactions of any order even in problems with high sparsity by approxi-
mating higher order interaction parameters with a low-rank factorized parameteriza-
tion. The use of an FM-based bottom layer in the deep network, therefore, naturally
solves the problem of high computational complexity of training neural networks
with high-dimensional binary inputs. The SNN is augmented either by a sampling-
based Restricted Boltzmann Machine (SNN-RBM) or a sampling-based Denoising
Auto-Encoder (SNN-DAE). The main challenge is that given many possible values
of several categorical fields, converting them into dummy variables results in a very
high-dimensional and sparse input space. For example, thirteen categorical fields can
become over 900,000 binary inputs in this problem. The FNN and SNN reduce the
complexity of using a neural network on such a large input by limiting the connectiv-
ity in the first layer and by pre-training by selective sampling, respectively. After pre-
training, the weights are fine-tuned in a supervised manner using back-propagation.
Evaluation focuses on the tuning of SNN-RBM and SNN-DAE models and their com-
parison against logistic regression, FM and FNN, on the iPinYou dataset8 [115] with
click data. Results show that one of the proposed methods performs best, though the
baselines are often close behind and twice take second place. The authors also find a
diamond-shape architecture is better than increasing, decreasing, or constant hidden-
layer sizes and that dropout works better than L2 regularization. Though this method
can extract non-linear features, it is only very effective when dealing with adver-
tisements without images. Consequently, further research on multi-modal sponsored
search to model images and text would be useful to pursue.

11 Lessons and Reflections

At the end of the early years of neural IR, it is natural to ask the following question:
Is there a set of established guidelines for neural IR? Is it sufficient to aggregate
embeddings or do we really need deep neural network models? In this section, we
summarize the lessons and reflections compiled from the reviewed work. Apart from
the high-level choice between the Aggregate and Learn methods, there are separate
design choices to be made for each category identified in Table 2.

As to a high level view regarding the choice between Aggregate and Learn, no
consistent advantage of word embeddings has emerged. Among the models that fall
within the aggregate category, directly using word embeddings provides consistent
gains in [65] but not in [57, 150, 212, 213, 225]. In [225], word embedding similarity
achieves comparable effectiveness to mutual information (MI) based term similarity.
For query-document similarity, Nalisnick et al [150] point out that utilising relations
between the IN and OUT embedding spaces learned by CBOW yields a more effec-
tive similarity function for query-document pairs. Diaz et al [57] propose to learn
word embeddings from a topically constrained corpora since the word embeddings
learned from an unconstrained corpus are found to be too general. Zamani and Croft
[212, 213] apply a sigmoid function on the cosine similarity scores in order to in-
crease the discriminative power.

8 http://data.computational-advertising.org

Neural Information Retrieval: At the End of the Early Years 51

Similar to past development of new modeling techniques in IR, there is a com-
mon theme of researchers starting first with bag-of-words models then wanting to
move toward modeling longer phrases in their future work. Ganguly et al [65] suggest
future work should investigate compositionality of term embeddings. Zuccon et al
[225] propose incorporating distributed representations of phrases to better model
query term dependencies and compositionality. Zheng and Callan [222] propose di-
rect modeling of bigrams and proximity terms. Zamani and Croft [213] suggest query
language models based on mutual-information and more complex language models
(bigram, trigram, etc.) could be pursued.

11.1 Reflections on Aggregate

In this section, we present the reflections on the evaluation of neural IR systems that
follow the Aggregate approach and rely on word embeddings.

11.1.1 Is there an established guideline for the choices to be made for learning word
embeddings?

Use of word embeddings involves the design decisions presented below.

NLM Should one use word2vec (CBOW or Skip-gram) [136, 139], GloVe [161],
or something else (such as count-based embeddings)? Can embeddings from mul-
tiple sets be selected between dynamically or combined together [151, 220]?

Corpora What training data/corpora should be used? Does performance vary much
if we simply use off-the-shelf embeddings (e.g., from word2vec or GLoVe) vs.
re-training embeddings for a target domain, either by fine-tuning [133] off-the-
shelf embeddings or re-training from scratch? Presumably, larger training data
is better, along with in-domain data similar to the test data on which the given
system is to be applied, but how does one trade-off greater size of out-of-domain
data vs. smaller in-domain data? How might they be best used in combination?

Hyperparameters How should hyper-parameters be set (e.g., dimensionality of em-
bedding space, window size, etc.)?

OOV Words How should one deal with out-of-vocabulary (OOV) terms not found in
the word embedding training data?

There is no complete analysis that would help to derive guidelines. We summarize
the reported partial observations from the literature.

Choice of NLM. Selection among word2vec CBOW or Skip-gram or GloVe ap-
pears quite varied. Zuccon et al [225] compare CBOW vs. Skip-gram, finding “no
statistical significant differences between the two . . . ” Kenter and de Rijke [95] use
both word2vec and GloVe [161] embeddings (both the originally released embed-
dings as well training their own embeddings) in order to induce features for their
machine learning model. They report model effectiveness using the original public
embeddings with or without their own additional embeddings, but do not report fur-
ther ablation studies to understand the relative contribution of different embeddings

52 Kezban Dilek Onal et al.

used. Grbovic et al [75]’s query2vec uses a two-level architecture in which the
upper layer models the temporal context of query sequences via Skip-gram, while
the bottom layer models word sequences within a query using CBOW. However,
these choices are not justified, and their later work [76] uses Skip-gram only. AL-
Masri et al [3] evaluate both CBOW and Skip-gram word2vec embeddings (us-
ing default dimensionality and context window settings) but present only Skip-gram
results, writing that “there was no big difference in retrieval performance between
the two.” Zamani and Croft [212, 213] adopt GloVe without explanation. Similarly
for word2vec, Mitra et al [145] simply adopt CBOW, while others adopt Skip-
gram[52, 130, 189, 205, 208, 223]. Zhang and Wallace [219] perform an empirical
analysis in the context of using CNNs for short text classification. They found that
the “best” embedding to use for initialization depended on the dataset. Motivated by
this observation, the authors proposed a method for jointly exploiting multiple sets
of embeddings (e.g., one embedding set induced using GloVe on some corpus and
another using a word2vec variant on a different corpus) [220]. This may also be
fruitful for IR tasks, suggesting a potential direction for future work.

Corpora. In the work that we have reviewed, embeddings are either learned from
a general-purpose corpus like Wikipedia (general purpose embeddings) or a task-
specific corpus. For Ad-hoc retrieval, the retrieval corpus itself is considered as a
corpus to learn embeddings. Besides, word embeddings are learned from various
task-specific corpora of community questions and their metadata [223], journal ab-
stracts and patient records [52] and venues’ comments from Foursquare [130]. Vulic
and Moens [189] learn bilingual word embeddings from a corpus of pseudo-bilingual
documents obtained via a merge-and-shuffle approach on a document level parallel
corpora, applying their model to cross-lingual IR.

For ad-hoc retrieval, embeddings learned from Wikipedia (general purpose em-
beddings) and embeddings learned from the retrieval corpus itself (corpus-specific
word embeddings) are compared in [222, 225]. The authors note that no significant
effect of this choice is observed for query-reweighting [222] or in a translation lan-
guage model for computing term similarities [225]. Zamani and Croft [213] train
GloVe on three external corpora and report, “there is no significant differences be-
tween the values obtained by employing different corpora for learning the embed-
ding vectors.” Similarly, Zheng and Callan [222], regarding their query-reweighting
model, write:

“[the system] performed equally well with all three external corpora; the dif-
ferences among them were too small and inconsistent to support any conclu-
sion about which is best. However, although no external corpus was best for
all datasets . . . The corpus-specific word vectors were never best in these ex-
periments . . . given the wide range of training data sizes – varying from 250
million words to 100 billion words – it is striking how little correlation there
is between search accuracy and the amount of training data.”

In contrast, Diaz et al [57] highlight that query expansion with word embeddings
learned from a topic-constrained collection of documents yields higher effectiveness
scores compared to embeddings learned from a general-purpose corpora. Besides,

Neural Information Retrieval: At the End of the Early Years 53

Yang et al [206] considers classification in which one background corpus (used to
train word embeddings) is a Spanish Wikipedia Dump which contains over 1 million
articles, while another is a collection of 20 million tweets having more than 10 words
per tweet. As expected, they find that when the background training text matches the
classification text, the performance is improved.

Hyperparameters. Vulic and Moens [189], Yang et al [206], Zheng and Callan [222],
Zuccon et al [225] compare different training hyper-parameters such as window size
and dimensionality of word embeddings. Zuccon et al [225]’s sensitivity analysis of
the various model hyperparameters for inducing word embeddings shows that ma-
nipulations of embedding dimensionality, context window size, and model objec-
tive (CBOW vs Skip-gram) have no consistent impact on model performance vs.
baselines. Vulic and Moens [189] find that while increasing dimensionality provides
more semantic expressiveness, the impact on retrieval performance is relatively small.
Zheng and Callan [222] find that 100 dimensions work best for estimating term
weights, better than 300 and 500. In experiments using the Terrier platform, Yang
et al [206] find that for the Twitter election classification task using CNNs, word em-
beddings with a large context window and dimension size can achieve statistically
significant improvements.

OOV Terms. Regarding the handling of OOV terms, the easiest solution is to dis-
card or ignore the OOV terms. For example, Zamani and Croft [213] only consider
queries where the embedding vectors of all terms are available. However, in end-
to-end systems, where we are jointly estimating (or refining) embeddings alongside
other model parameters, it is intuitive to randomly initialize embeddings for OOV
words. For instance, in the context of CNNs for text classification, Kim [97] adopted
this approach. The intuition behind this is two-fold. First, if the same OOV appears
in a pair of texts, queries, or documents being compared, this contributes to the sim-
ilarity scores between those two. Second, if two different OOV terms appear in the
same pair, their dissimilarity will not contribute in the similarity function. However,
this does not specifically address accidental misspellings or creative spellings (e.g.,
“kool”) commonly found in social media. One might address this by hashing words to
character n-grams (see Section 11.2.6) or character-based modeling more generally
(e.g., [46, 56, 218]).

11.1.2 How to use word embeddings?

As mentioned previously, publications in the Implicit category are characterized by
integrating word embedding similarity into existing retrieval frameworks. In con-
trast, publications in the Explicit category build TTU representations based on word
embeddings, in an unsupervised way. For the Implicit approach, the term similarity
function is a design choice whereas the TTU similarity function stands as a design
choice for the Explicit category.

Besides the similarity functions, for the Explicit category, it is crucial to note the
choice of the aggregation function that builds the TTU vector from word embed-
dings. There are some publications that diverge from the simple aggregation method

54 Kezban Dilek Onal et al.

averaging/summing embedding vectors. Clinchant and Perronnin [42], Zhang et al
[216], Zhou et al [223] use a Fisher Kernel [90] in order to compute TTU representa-
tions. Ganguly et al [66] opine that simply adding vectors of word embedding cannot
sufficiently capture the context of longer textual units. Instead, the authors propose
a new form of similarity metric based on the assumption that the document can be
represented as a mixture of p-dimensional Gaussian probability density functions and
each word2vec embedding (p-dimensions) is an observed sample. Then, using the
EM algorithm, they estimate the probability density function that can be incorporated
into the query likelihood language model using linear interpolation.

Word similarity function. Cosine similarity is the choice adopted by almost all of the
publications reviewed. However, Zamani and Croft [212, 213] propose using sigmoid
and softmax transformations of cosine similarity on the grounds that cosine similarity
values are not discriminative enough. Their empirical analysis shows that there are
no substantial differences (e.g., two times more) between the similarity of the most
similar term and the 1, 000-th similar term to a given term w, while the 1, 000-th
word is unlikely to have any semantic similarity with w. Consequently, they propose
using monotone mapping functions (e.g., sigmoid or softmax) to transform the cosine
similarity scores.

TTU similarity function. Publications under the Explicit category are characterized
by building TTU representations based on pre-trained embeddings and computing
TTU pair similarity by cosine similarity of the distributed TTU representations. Devi-
ating from this generic approach, Ganguly et al [66] opine that simply adding vectors
of word embedding cannot sufficiently capture the context of longer textual units.
Instead, the authors propose a new form of similarity metric based on the assump-
tion that the document can be represented as a mixture of p-dimensional Gaussian
probability density functions and each word2vec embedding (p-dimensions) is an
observed sample. Then, using the EM algorithm, they estimate the probability den-
sity function which can be incorporated to the query likelihood language model using
linear interpolation. Finally, Word Mover’s Distance (WMD) [101] is an alternative
distance metric defined as the minimum cumulative distance that all words in the
first document of the pair need to travel to exactly match the other document of the
pair. The distance between two words is computed by the Euclidean distance in the
word2vec space.

11.2 Reflections on Learn

In this subsection, we present design choices for the models reviewed in the Learn
category of the How dimension of our taxonomy (Table 2).

11.2.1 How to choose the appropriate category of Learn?

When making a choice for a training objective (a subcategory of Learn), the following
three points should be considered: training data, representations for unseen TTUs,
and TTU length.

Neural Information Retrieval: At the End of the Early Years 55

Training data. Learn to match models are trained to maximize the relevance scores
of pairs that have been annotated or inferred to be relevant and minimize the scores
of irrelevant pairs. In contrast, Learn to predict and Learn to generate models assume
that TTUs that co-occur in the same context are similar.

Computing representations for unseen TTUs. In the Learn to autoencode, Learn to
generate and Learn to match models, distributed representations of unseen TTUs can
be computed by forward propagation through the SCN. In contrast, Learn to pre-
dict models are focused on learning embeddings for a fixed collection of TTUs. An
additional inference step, which requires including the representations of the entire
collection, is required for obtaining the embedding of an unobserved TTU. While
PV (the first Learn to predict model) has been adopted in many studies (e.g., Xia
et al [200] use PV-DBOW to represent documents) and is often reported as a baseline
(e.g., [185]), concerns about reproducibility have also been raised. Kiros et al [98]
report results below SVM when re-implementing PV. Kenter and de Rijke [95] note,
“it is not clear, algorithmically, how the second step – the inference for new, unseen
texts – should be carried out.” Perhaps most significantly, later work co-authored by
Mikolov [134]9 has disavowed the original findings of Le and Mikolov [103], writ-
ing, “to match the results from Le and Mikolov [103], we followed the [author’s]
suggestion . . . However, this produces the [reported] result only when the training
and test data are not shuffled. Thus, we consider this result to be invalid.”

TTU length. Learn to generate models are designed to generate unseen synthetic
textual units. To this end, generating textual units has been shown to be successful for
queries [123, 182]. Generating long textual units is not well-studied up to this point,
except [116]. The DSSM variants from the Learn to match are shown to work better
on document titles instead of the entire document content [78, 175].

11.2.2 Choice of semantic compositionality network: How to represent text beyond
single words? Does text granularity influence the choice?

The simplest way to represent longer textual units, such as phrases, sentences, or
entire documents, is to sum or average their constituent word embeddings. However
such bag-of-words compositions ignore word ordering, and simple averaging treats
all words as equally important in composition (though some work has considered
weighted operations, e.g., [189]). Ganguly et al [66] opine that:

“. . . adding the constituent word vectors . . . to obtain the vector represen-
tation of the whole document is not likely to be useful, because . . . compo-
sitionality of the word vectors [only] works well when applied over a rela-
tively small number of words . . . [and] does not scale well for a larger unit of
text, such as passages or full documents, because of the broad context present
within a whole document.”

9 https://github.com/mesnilgr/iclr15

56 Kezban Dilek Onal et al.

Fortunately, a variety of SCNs, including Feed forward NN, CNN, RNN, LSTM and
their variants, have been proposed for inducing representations of longer textual units.
However, there is no evidence that any one method consistently outperforms the oth-
ers, with the performance of each method instead appearing to often depend on the
specific task and dataset being studied. We further discuss the use of CNNs and RNNs
below.

Convolutional Neural Networks (CNNs). Shen et al [175, 176] propose a Convolu-
tional Latent Semantic Model (CLSM) to encode queries and documents into fix-
length vectors, following a popular “convolution+pooling” CNN architecture. The
first layer of CLSM is a word hashing layer that can encode words into vectors.
CLSM does not utilize word embeddings as input, seemingly distinguishing it from
all other works using CNNs. Mitra [143] use CLSMs to encode query reformulations
for query prediction, while Mitra and Craswell [144] use CLSMs on query prefix-
suffix pairs corpus for query auto-completion. They sample queries from the search
query logs and split the query at every possible word boundary to form prefix-suffix
pairs.

Severyn and Moschitti [174] and Suggu et al [183] adopt a similar “convolu-
tion+pooling” CNN architecture to encode question and answer sentence representa-
tions, which serve as features for a second-stage ranking NN. See Mitra et al [145]
for further discussion of such two-stage telescoping approaches.

Yang et al [205] develop a novel value-shared CNN, and apply it on the query-
answer matching matrix to extract the semantic matching between the query and an-
swer. This model can capture the interaction between intermediate terms in the query
and answer, rather than only considering the final representation of the query and an-
swer. The motivation behind the value-shared CNN is that semantic matching value
regularities between a question and answer is more important than spatial regularities
typical in computer vision. Similarly, contemporaneous work by Guo et al [78] notes:

“Existing interaction-focused models, e.g., ARC-II and MatchPyramid, em-
ploy a CNN to learn hierarchical matching patterns over the matching matrix.
These models are basically position-aware using convolutional units with a
local “receptive field” and learning positional regularities in matching pat-
terns. This may be suitable for the image recognition task, and work well on
semantic matching problems due to the global matching requirement (i.e., all
the positions are important). However, it may not be suitable for the ad-hoc
retrieval task, since such positional regularity may not exist . . . ”

Recurrent Neural Networks (RNNs). Sordoni et al [182] build a hierarchical GRU to
encode the query and the query session into vector representations. Song et al [180]
use an LSTM to model user interests at different time steps and encode them into a
vector. Lioma et al [116] create new relevant information using an LSTM that takes
the concatenated text of a query and its known relevant documents as input using
word embeddings. However, rather than take the whole text of a document, they ex-
tract a context window of ±n terms around every query term occurrence. Yan et al
[203] use a bidirectional LSTM followed by a CNN to model the original query,

Neural Information Retrieval: At the End of the Early Years 57

reformulated query, candidate reply, and antecedent post in their human-computer
conversation system. Wang and Nyberg [191] use a stacked bidirectional LSTM to
sequentially read words from both question and answer sentences, calculating rel-
evance scores for answer sentence selection through mean pooling across all time
steps. Section 11.2.3 presents Cohen et al [43]’s comparison of CNNs vs. RNNs by
document length.

11.2.3 Text granularity in IR: Does text granularity have an effect on the optimal
choice for SCN?

Many studies to date focus on short text matching rather than longer documents more
typical of modern IR ad-hoc search. Cohen et al [43] study how the effectiveness
of NN models for IR vary as a function of document length (i.e., text granularity).
They consider three levels of granularity: (i) fine, where documents often contain
only a single sentence and relevant passages span only a few words (e.g., question
answering); (ii) medium, where documents consist of passages with a mean length
of 75 characters and relevant information may span multiple sentences (e.g., passage
retrieval); and (iii) coarse, or typical modern ad-hoc retrieval. For fine granularity,
they evaluate models using the TREC QA dataset and find that CNNs outperform
RNNs and LSTMs, as their filter lengths are able to effectively capture language
dependencies. For medium granularity, they evaluate using the Yahoo Webscope L4
CQA dataset and conclude that LSTM networks outperform CNNs due to their ability
to model syntactic and semantic dependencies independent of position in sequence.
In contrast, RNNs without LSTM cells do not perform as well, as they tend to “forget”
information due to passage length.

For ad-hoc retrieval performance on Robust04, comparing RNNs, CNNs, LSTM,
DSSM, CLSM, Vulic and Moens [189]’s approach, and Le and Mikolov [103]’s PV,
Cohen et al [43] find that all neural models perform poorly. They note that neural
methods often convert documents into fixed-length vectors, which can introduce a
bias for either short or long documents. However, they find that the approaches of
Vulic and Moens [189] and Le and Mikolov [103] perform well when combined
with language modeling approaches that explicitly capture matching information of
queries and documents. Similar observation is also reported in [66].

11.2.4 Choice of similarity function: Which function should I choose to measure the
similarity between two text snippets?

Similarity here is not strictly limited to linguistic semantics, but more generally in-
cludes relevance matching between queries and documents or questions and answers.
While cosine similarity is the simplest and the most common approach, a variety of
more sophisticated methods have been proposed.

Wang and Nyberg [191] use a stacked bidirectional LSTM to sequentially read
words from both question and answer sentences, calculating relevance scores for an-
swer sentence selection through mean pooling across all time steps. Yan et al [203]
match sentences by concatenating their vector representations and feeding them into
a multi-layer fully-connected neural network, matching a query with the posting and

58 Kezban Dilek Onal et al.

reply in a human computer conversation system. Xia et al [200] propose a neural
tensor network (NTN) approach to model document novelty. This model takes a doc-
ument and a set of other documents as input. The architecture uses a tensor layer, a
max-pooling layer, and a linear layer to output a document novelty score. Guo et al
[78]’s recent Deep Relevance Matching Model appears to be one of the most suc-
cessful to date for ad-hoc search over longer document lengths. In terms of textual
similarity, they argue that the ad-hoc retrieval task is mainly about relevance match-
ing, different from semantic matching in NLP. They model the interaction between
query terms and document terms, building a matching histogram on top of the simi-
larities. They then feed the histogram into a feed forward neural network. They also
use a term gating network to model the importance of each query term.

Yang et al [205] propose an attention-based neural matching model (aNMM) for
question answering. Similar to Guo et al [78], they first model the interaction between
query terms and document terms to build a matching matrix. They then apply a novel
value-shared CNN on the matrix. Since not all query terms are equally important,
they use a softmax gate function as an attention mechanism in order to learn the
importance of each query term when calculating the matching between the query and
the answer.

To summarize, simply calculating cosine similarity between two text vector rep-
resentations might not be the best choice to capture the relevance relation between
texts. People develop neural models to learn similarity, and model the interaction
between texts in a finer granularity.

11.2.5 Initializing word embeddings in NNs: Should they be tuned or not during the
training process?

We observed three approaches for initializing and updating the embeddings during
training of Learn models:

– The embedding layer of the models are initialized randomly and learned from
scratch during training of the task-specific model.

– The embeddings layer is initialized with pre-trained embeddings and is kept fixed
during training of the task-specific model.

– The embedding layer is initialized with pre-trained embeddings and is fine-tuned
for the task during training of the task-specific model.

At present, there is no clear evidence showing that either method consistently works
best. However, we may note that learning word embeddings is possible only with
large corpora; thus in cases where task-specific training data is limited as in TREC
Ad-Hoc collections [78] and the TREC-QA data set (see Section 7.1 for the related
work), pre-trained word embeddings have been preferred to initialize, in order to shift
focus of training towards learning semantic compositionality.

11.2.6 How to cope with large vocabularies?

Training neural networks is computationally expensive and today it is not possible to
train a CNN or RNN with a 1M word vocabulary. word2vec models, being shallow

Neural Information Retrieval: At the End of the Early Years 59

networks with a single linear layer can be trained with large vocabularies owing to
softmax approximation methods such as negative sampling and NCE. In cases where
it is crucial to learn a semantic compositionality model with a CNN or RNN archi-
tecture, the large vocabulary brings a challenge. Word hashing, first introduced in
[89] together with the DSSM model and adopted by [143, 144, 175, 176, 207], re-
duces large vocabularies to a moderate sized vocabulary of 30K of character trigrams.
Words are broken down into letter n-grams and then represented as a vector of letter
n-grams.

Huang et al [89] provide an empirical analysis where the original vocabulary
size of 500K is reduced to only 30K owing to word hashing. While the number of
English words can be unlimited, the number of letter n-grams in English is often
limited, thus word hashing can resolve the out-of-vocabulary (OOV) problem as well.
However, one inherent problem of word hashing is the hashing conflict, which can be
serious for a very large corpus. Another set of methods, such as Byte Pair Encoding
[173] have been proposed in order to cope with large vocabularies in Neural Machine
Translation. Although only word hashing has been used for neural IR to this end,
other vocabulary reduction methods should be considered in future work.

12 Conclusion

The purpose of this survey is to offer an introduction to neural models for information
retrieval by surveying the state of knowledge up to the end of 2016. To this end we
have reviewed and classified existing work in the area. We used a taxonomy in which
we recognize different target textual units (TTUs), different types of usage of learned
text representations (“usage”) IR Tasks, as well as different methods for building rep-
resentations (“how”). Within the latter category we identified two sub-categories: the
aggregate and learn categories. The aggregate category includes methods based on
pre-computed word embeddings for computing semantic similarity, while the learn
category covers neural semantic compositionality models.

Within the aggregate category we observed two major patterns of exploiting word
embeddings. In the explicit type of use of embeddings, TTUs are associated with a
representation in the word embedding space and semantic similarity of TTUs is com-
puted based on these representations. In the implicit type of use, similarity of word
embeddings is plugged in as term similarity in an existing statistical language mod-
eling frameworks for retrieval. Several strategies for adapting word embeddings for
document retrieval have been introduced, such as topically constraining the document
collection, new similarity functions and the inclusion of TF-IDF weights for aggre-
gating word embeddings. This may be understood as an indication that we need to
design IR specific objectives for learning distributed representations. Are the training
objective and semantic relationships encoded by the embedding vectors useful for
the target retrieval task? A future direction would be to identify the types of semantic
word relations that matter to semantic matching in web search, across multiple tasks.

We classified the neural semantic compositionality models reviewed in the learn
category, into four sub-categories Learn to autoencode, Learn to match, Learn to pre-
dict and Learn to generate, considering the training objectives optimized for learning

60 Kezban Dilek Onal et al.

representations. Learn to match models are trained using noisy relevance signals from
click information in click-through logs whereas the models in the other categories
are designed to predict or generate task-specific context of TTUs. The majority of the
Learn to match and Learn to predict models are evaluated on datasets extracted from
commercial search engine logs. A comparative evaluation of models from different
sub-categories on publicly available data sets, is required in order to gain a deeper
understanding of semantic compositionality for matching.

Currently, existing Learn to predict/generate context and Learn to generate mod-
els mostly rely on temporal context windows. It would be interesting to examine
other types of contextual relations in search logs, such as long term search history of
users and noisy relevance signals exploited by learn to match models. Another future
direction would concern applications of the attention mechanism [10] for designing
models that can predict where a user would attend in document, given a query.

Looking forward, we believe there are several key directions where progress is
needed. First, we presented the document retrieval, query suggestion and ad retrieval-
sponsored search tasks as largely disjoint tasks. However, the models proposed for
one task may be useful for another. For instance, the context-content2vec model [76]
was evaluated only on matching ads to queries yet the distributed query representa-
tions could also be evaluated for query suggestion or query auto completion [30]. In
particular, there is a need to compare distributed query representations and similar-
ity/likelihood scores produced by the proposed models on query tasks. In some work,
the representations were used as features in learning to rank frameworks and there
are no clues about the power of these representations in capturing semantics.

More broadly, there is a need for systematic and broad task-based experimental
surveys that focus on comparative evaluations of models from different categories,
but for the same tasks and under the same experimental conditions, very much like
the reliable information access (RIA) workshop that was run in the early 2000s to
gain a deeper understanding of query expansion and pseudo relevance feedback [82].

Another observation is that recently introduced generative models—mostly based
on recurrent neural networks—can generate unseen (synthetic) textual units. The gen-
erated textual units have been evaluated through user studies [116, 182]. For the query
suggestion task, generated queries have been found to be useful; and so have word
clouds of a synthetic document. The impact of these recent neural models on user
satisfaction or retrieval scenarios should be investigated on real scenarios.

Over the years, IR has made tremendous progress by learning from user behav-
ior, either by introducing, e.g., click-based rankers [163] or, more abstractly, by using
models that capture behavioral notions such as examination probability and attrac-
tiveness of search results through click models [40]. How can such implicit signals
be used to train neural models for semantic matching in web search? So far, we have
only seen limited examples of the use of click models in training neural models for
web search tasks.

Interest in Neural IR has never been greater, spanning both active research and
deployment in practice10 [135]. Neural IR continues to accelerate in quantity of work,
sophistication of methods, and practical effectiveness [78]. New methods are being

10 https://en.wikipedia.org/wiki/RankBrain

Neural Information Retrieval: At the End of the Early Years 61

explored that may be computationally infeasible today (see Diaz et al [57]), but if
proven effective, could motivate future optimization work to make them more prac-
tically viable (e.g., [92, 154]). NN approaches have come to dominate speech recog-
nition (2011), computer vision (2013), and NLP (2015). Similarly, deep learning will
come to dominate information retrieval as well [128].

At the same time, healthy skepticism about Neural IR also remains. The key ques-
tion in IR today might be most succinctly expressed as: “Will it work?” While NN
methods have worked quite well on short texts, effectiveness on longer texts typi-
cal of ad-hoc search has been problematic [43, 89], with only very recent evidence
to the contrary [78]. Side by side comparisons of lexical vs. neural methods often
show at least as many losses as gains for neural methods, with at best an advantage
“on average” [187, 188]. In addition, while great strides have been made in com-
puter vision through employing a very large number of hidden layers (hence “deep”
learning), such deep structures have typically been less effective in NLP and IR than
more shallow architectures [158], though again with notable recent exceptions [46].
When Neural IR has led to improvements in ad-hoc search results, improvements
appear relatively modest [57, 212] when compared to traditional query expansion
techniques for addressing vocabulary mismatch, such as pseudo-relevance feedback
(PRF). Both Ganguly et al [66] and Diaz et al [57] have noted that global word em-
beddings, trained without reference to user queries, vs. local methods like PRF for
exploiting query-context, appear limited similarly to the traditional global-local di-
vide seen with existing approaches like topic modeling [209].

As Li [109] put it, “Does IR Need Deep Learning?” Such a seemingly simple
question requires careful unpacking. Much of the above discussion assumes Neural
IR should deliver new state-of-the-art quality of search results for traditional search
tasks. While it may do so, this framing may be far too narrow, as Li [109]’s presen-
tation suggests. The great strength of Neural IR may lie in enabling a new generation
of search scenarios and modalities, such as searching via conversational agents [203],
multi-modal retrieval [124, 125], knowledge-based search IR [152], or synthesis of
relevant material [116]. It may also be that Neural IR will provide greater traction for
other future search scenarios not yet considered.

Given that the efficacy of deep learning approaches is often driven by “big data”,
will Neural IR represent yet another fork in the road between industry and academic
research, where massive commercial query logs deliver Neural IR’s true potential?
Or should we frame this more positively as an opportunity for research on generating
training material or even simulation, as has previously been pursued for, e.g., learning
to rank [117], see, e.g., [9, 20]? There is also an important contrast to note here
between supervised scenarios, such as learning to rank vs. unsupervised learning of
word embeddings or typical queries (see [143, 144, 182, 187, 188]). LeCun et al [105]
wrote, “we expect unsupervised learning to become far more important in the longer
term.” Just as the rise of the Web drove work on unsupervised and semi-supervised
approaches by the sheer volume of unlabeled data it made available, the greatest
value of Neural IR may naturally arise where the biggest data is found: continually
generated and ever-growing behavioral traces in search logs, as well as ever-growing
online content.

62 Kezban Dilek Onal et al.

While skepticism of Neural IR may well remain for some time, the practical im-
portance of search today, coupled with the potential for significantly new traction
offered by this “third wave” of NNs, makes it unlikely that researchers will aban-
don Neural IR anytime soon without having first exhaustively tested its limits. As
such, we expect the pace and interest in Neural IR will only continue to blossom,
both in new research and increasing application in practice. Consequently, this first
special-issue journal on Neural IR in 2017 will likely attract tremendous interest and
is well-poised for timely impact on research and practice.

Acknowledgements We would like to thank Christophe van Gysel from the University of Amsterdam,
for his valuable feedback and comments. We would also like to thank our anonymous reviewers for their
constructive comments and the guest editors for their advice.

The following additional students at the University of Texas at Austin contributed indirectly to the
writing of this literature review: Manu Agarwal, Edward Babbe, Anuparna Banerjee, Jason Cai, Dillon
Caryl, Yung-Sheng Chang, Shobhit Chaurasia, Linli Ding, Brian Eggert, Michael Feilbach, Alan Gee,
Jeremy Gin, Rahul Huilgol, Miles Hutson, Neha Javalagi, Yan Jiang, Kunal Lad, Yang Liu, Amanda Lucio,
Kristen Moor, Daniel Nelson, Geoffrey Potter, Harshal Priyadarshi, Vedhapriya Raman, Eric Roquemore,
Juliette Seive, Abhishek Sinha, Ashwini Venkatesh, Yuxuan Wang, and Xu Zhang.

A Acronyms used

AI artificial intelligence
ASR automatic speech recognition
BoEW Bag of Embedded Words
BWESG Bilingual word Embeddings Skip-Gram
C-DSSM Convolutional Deep Structured Semantic Models
CBOW Continuous Bag of Words
CDNN Convolutional Deep Neural Network
CLSM Convolutional Latent Semantic Model
CNN convolutional neural network
CQA community question answering
DESM Dual Embedding Space Model
DFR Divergence From Randomness
DRMM Deep Relevance Matching Model
DSM distributional semantic model
DSSM Deep Structured Semantic Model
EPV Extended Paragraph Vector
FK Fisher Kernel
FV Fisher Vector
GLM Generalized Language Model
GloVe Global Vectors
GRU Gated Recurrent Unit
HAL Hyperspace Analog to Language
HDV Hierarchical Document Vector
HRED Hierarchical Recurrent Encoder Decoder
IR information retrieval
IS Importance Sampling
KB knowledge base
LDA Latent Dirichlet Allocation
LM language model
LSA Latent Semantic Analysis
LSI Latent Semantic Indexing
LSTM-DSSM LSTM Deep Structured Semantic Model
LSTM Long Short Term Memory

Neural Information Retrieval: At the End of the Early Years 63

MI mutual information
MT machine translation
NCE Noise Contrastive Estimation
NEG Negative Sampling
NLM Neural Language Model
NLP Natural language processing
NLTM Neural Translation Language Model
NN neural network
NNLM Neural Network Language Model
NTN Neural Tensor Networks
OOV Out Of Vocabulary
PAMM Perceptron Algorithm using Measures as Margins
PGM probabilistic graphical model
PLSA Probabilistic Latent Semantic Analysis
QA question answering
PV-DBOW Paragraph Vector with Distributed Bag of Words
PV-DM Paragraph Vector with Distributed Memory
PV Paragraph Vector
QLM query language model
R-LTR Relational Learning-to-Rank framework
RBM Restricted Boltzman Machine
RecNN recursive neural network
RNN recurrent neural network
RNNLM Recurrent Neural Network Language Model
SC semantic compositionality
SCN Semantic Compositionality Network
SGNS Skip-Gram with Negative Sampling
TTU target textual unit
WMD Word Mover’s Distance

B Resources

In this section, we present pointers to publicly available resources and tools which the reader would benefit
for getting started with neural models, distributed representations, and information retrieval experiments
with semantic matching.

B.1 Word embeddings

Corpora used. Wikipedia and GigaWord5 are the corpora widely used for learning word embeddings.
The latest Wikipedia dump can be obtained from Wikimedia.11 The GigaWord5 data set is accessible
through the LDC.12 Several authors have learned embeddings from query logs [29, 94, 182].

Pre-trained word embeddings. It is possible to obtain pre-trained GloVe embeddings13 learned
from large corpora, CBOW embeddings trained on large-scale Bing query logs [145]14 and different sets
of word embeddings15 used for evaluating NLTM in [225].

11 https://dumps.wikimedia.org/enwiki/latest/enwiki-latest-pages-articles.
xml.bz2

12 https://catalog.ldc.upenn.edu/LDC2011T07
13 http://nlp.stanford.edu/projects/glove/
14 https://www.microsoft.com/en-us/download/details.aspx?id=52597
15 http://www.zuccon.net/ntlm.html

64 Kezban Dilek Onal et al.

Learning word embeddings. The source code for GloVe [161]16 and the models introduced in
[108]17 is publicly shared by the authors. Implementations of the Word2Vec and Paragraph Vector models
are included in the gensim library.18

Visualizing word embeddings. The dimensionality reduction technique t-Distributed Stochastic
Neighbor Embedding (t-SNE) [127] is commonly used for visualizing word embedding spaces and for
trying to understand the structures learned by neural models.19

B.2 Test corpora used for retrieval experiments

For retrieval experiments regarding neural models for semantic matching, the full range of CLEF, FIRE
and TREC test collections has been used. In Table 3, we present the list of data sets used in experimental
frameworks of reviewed work. For each data set, the list of studies that report related experiment results is
given in the table.

Table 3: Datasets used in experimental setups. (Continues)

English Data Study

20-Newsgroup Corpus Salakhutdinov and Hinton [171]

Amazon product data [131] Van Gysel et al [187]

AOL Query Logs Kanhabua et al [94], Mitra [143], Mitra and Craswell [144],
Sordoni et al [182]

Bing Query Logs and WebCrawl Mitra [143], Mitra and Craswell [144], Mitra et al [145], Nal-
isnick et al [150]

CLEF03 English Ad-hoc Clinchant and Perronnin [42]

CLEF 2016 Social Book Search Amer et al [5]

CLEF Medical Corpora ALMasri et al [3]

eHealth Rekabsaz et al [165]

MSN Query Log Kanhabua et al [94]

MSR Paraphrase Corpus Kenter and de Rijke [95]

OHSUMED De Vine et al [52]

PubMed Balikas and Amini [12]

Reuters Volume I (RCV1-v2) Salakhutdinov and Hinton [171]

SemEval 2015-2016 DFFN (Suggu et al [183])

Stack Overflow Boytsov et al [26]

TIPSTER (Volume 1-3) Zhang et al [216]

TREC 1-2 Ad-hoc (AP 88-89) Clinchant and Perronnin [42], Zamani and Croft [212], Zamani
and Croft [213], Zuccon et al [225]

TREC 1-3 Ad-hoc Zuccon et al [225], Rekabsaz et al [165]

16 http://nlp.stanford.edu/projects/glove/
17 https://bitbucket.org/omerlevy/hyperwords
18 https://radimrehurek.com/gensim/
19 https://lvdmaaten.github.io/tsne/

Neural Information Retrieval: At the End of the Early Years 65

TREC 6-8 Ad-hoc GLM (Ganguly et al [65]), Lioma et al [116], Rekabsaz et al
[164], Roy et al [169], Rekabsaz et al [165], Roy et al [168]

TREC 9-10 Roy et al [168]

TREC 12 Ad-hoc Diaz et al [57]

TREC 2005 HARD Rekabsaz et al [164], Rekabsaz et al [165]

TREC 2007-2008 Million Query Yang et al [204]

TREC 2009-2011 Web Xia et al [200]

TREC 2009-2013 Web PV (Grbovic et al [76])

TREC 2010-2012 Web QEM (Sordoni et al [181])

TREC 2011 Microblog CDNN (Severyn and Moschitti [174]), Zhang et al [216]

TREC 2012 Microblog CDNN (Severyn and Moschitti [174])

TREC 2015 Contextual Suggestion Manotumruksa et al [130]

TREC ClueWeb09-Cat-B DRMM (Guo et al [78]), QEM (Sordoni et al [181]), Zhang
et al [216], Zheng and Callan [222]

TREC DOTGOV Zuccon et al [225]

TREC Enterprise Track 2005-2008 Van Gysel et al [188]

TREC GOV2 Yang et al [204], Zamani and Croft [212], Zamani and Croft
[213], Zheng and Callan [222]

TREC MedTrack De Vine et al [52], Zuccon et al [225]

TREC QA 8-13 aNMM (Yang et al [205]), BLSTM (Wang and Nyberg [191]),
CDNN (Severyn and Moschitti [174]), Yu et al [211], [43]

TREC Robust GLM (Ganguly et al [65]), Roy et al [169], Roy et al [168]

TREC Robust 2004 Clinchant and Perronnin [42], Diaz et al [57], Guo et al [78],
Zamani and Croft [212], Zamani and Croft [213], Zheng and
Callan [222]

TREC WSJ87-92 Zuccon et al [225]

TREC WT10G Roy et al [169], Zheng and Callan [222]

Yahoo! Answers Boytsov et al [26], Zhou et al [223]

Chinese Data Study

Baidu Tieba Yan et al [203]

Baidu Zhidao Yan et al [203], Zhang et al [216], Zhou et al [223]

Douban Forum Yan et al [203]

Sina Weibo Yan et al [203], Zhang et al [216]

SogouT 2.0 Zhang et al [216]

Multi-Lingual Data Study

CLEF 2001-2003 Ad-hoc Vulic and Moens [189]

FIRE 2013 Gupta et al [80]

iPinYou [115] Zhang et al [217]

UT Expert Retrieval [19] Van Gysel et al [188]

Yandex Borisov et al [25]

66 Kezban Dilek Onal et al.

B.3 Implementing neural SC models

Theano,20 TensorFlow21 Torch22 and PyTorch23 are libraries that are widely used by the deep learning
community for implementing neural network models. These libraries enable construction of neural net-
work models from pre-defined high-level building blocks such as hidden units and layers. It is possible to
define neural network models with different choices of architectures, non-linearity functions, etc.

GPU support and automatic differentiation [15] are crucial features required for fast training neural
networks. Theano and TensorFlow, enable performing matrix operations efficiently, in parallel, on GPU.
Training neural networks with back-propagation requires computation of derivatives of the cost function
with respect to every parameter of the network. Automatic differentiation in Theano and TensorFlow re-
lieve the users from the effort on the manual derivation of derivatives of the objective function. These
libraries compute the derivatives automatically given the definition of the neural network architecture and
the cost function.

B.4 Publicly Available Implementations of Existing Neural IR Models

The deep learning community has a strong tradition of sharing, in some version, the code used to produce
the experimental results reported in the field’s publications. The information retrieval community is in-
creasingly adopting this attitude too. Some authors of publications on neural IR models have shared their
code; see e.g., DRMM [78]24, HRED [182]25, SERT [187, 188]26, CDNN [174]27, DeepMerge [106]28,
DeepTR [222]29, Mixed Deep [80]30, NTLM [225]31, aNMM [205]32, KEDRLM [168]33.

References

1. Ai Q, Yang L, Guo J, Croft WB (2016) Analysis of the paragraph vector model for information
retrieval. In: Proceedings of the 2016 ACM International Conference on the Theory of Information
Retrieval, ACM, New York, NY, USA, ICTIR ’16, pp 133–142

2. Ai Q, Yang L, Guo J, Croft WB (2016) Improving language estimation with the paragraph vector
model for ad-hoc retrieval. In: Proceedings of the 39th International ACM SIGIR Conference on
Research and Development in Information Retrieval, ACM, New York, NY, USA, SIGIR ’16, pp
869–872

3. ALMasri M, Berrut C, Chevallet JP (2016) A comparison of deep learning based query expansion
with pseudo-relevance feedback and mutual information. In: European Conference on Information
Retrieval, Springer, pp 709–715

4. Amati G, Van Rijsbergen CJ (2002) Probabilistic models of information retrieval based on measuring
the divergence from randomness. ACM Transactions on Information Systems (TOIS) 20(4):357–389

20 http://deeplearning.net/software/theano/
21 https://www.tensorflow.org/
22 http://torch.ch/
23 http://pytorch.org/
24 http://www.bigdatalab.ac.cn/benchmark/bm/bd?code=DRMM(LCH-IDF)
25 https://github.com/sordonia/hred-qs
26 https://github.com/cvangysel/SERT
27 https://github.com/aseveryn/deep-qa
28 https://ciir.cs.umass.edu/downloads/DeepMerge/
29 http://www.cs.cmu.edu/˜gzheng/code/TermRecallKit-v2.tar.bz2
30 http://www.dsic.upv.es/˜pgupta/mixed-script-ir
31 https://github.com/ielab/adcs2015-NTLM
32 https://github.com/yangliuy/aNMM-CIKM16
33 https://github.com/gdebasis/kderlm

Neural Information Retrieval: At the End of the Early Years 67

5. Amer NO, Mulhem P, Gery M (2016) Toward word embedding for personalized information re-
trieval. In: ACM SIGIR Workshop on Neural Information Retrieval (Neu-IR)

6. Andoni A, Indyk P (2006) Near-optimal hashing algorithms for approximate nearest neighbor in
high dimensions. In: 2006 47th Annual IEEE Symposium on Foundations of Computer Science
(FOCS’06), IEEE, pp 459–468

7. Arel I, Rose DC, Karnowski TP (2010) Deep machine learning-a new frontier in artificial intelligence
research. IEEE Computational Intelligence Magazine 5(4):13–18

8. Azimi J, Alam A, Zhang R (2015) Ads keyword rewriting using search engine results. In: Proceed-
ings of the 24th International Conference on World Wide Web, International World Wide Web Con-
ferences Steering Committee, Republic and Canton of Geneva, Switzerland, WWW ’15 Companion,
pp 3–4, DOI 10.1145/2740908.2742739

9. Azzopardi L, de Rijke M, Balog K (2007) Building simulated queries for known-item topics: An
analysis using six european languages. In: 30th Annual International ACM SIGIR Conference on
Research & Development on Information Retrieval, ACM

10. Bahdanau D, Cho K, Bengio Y (2014) Neural machine translation by jointly learning to align and
translate. arXiv preprint arXiv:14090473

11. Bai B, Weston J, Grangier D, Collobert R, Sadamasa K, Qi Y, Chapelle O, Weinberger K (2009)
Supervised semantic indexing. In: Proceedings of the 18th ACM Conference on Information and
Knowledge Management, ACM, pp 187–196

12. Balikas G, Amini MR (2016) An empirical study on large scale text classification with skip-gram
embeddings. In: ACM SIGIR Workshop on Neural Information Retrieval (Neu-IR)

13. Bar-Yossef Z, Kraus N (2011) Context-sensitive query auto-completion. In: Proceedings of the 20th
International Conference on World wide Web, ACM, pp 107–116

14. Baroni M, Dinu G, Kruszewski G (2014) Don’t count, predict! a systematic comparison of context-
counting vs. context-predicting semantic vectors. In: Proceedings of the 52nd Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), Association for Computational
Linguistics, pp 238–247

15. Baydin AG, Pearlmutter BA, Radul AA, Siskind JM (2015) Automatic differentiation in machine
learning: a survey. arXiv preprint arXiv:150205767

16. Bengio Y (2009) Learning deep architectures for AI. Foundations and Trends in Machine Learning
2(1):1–127

17. Bengio Y, Ducharme R, Vincent P, Janvin C (2003) A neural probabilistic language model. Journal
of Machine Learning Research 3:1137–1155

18. Bengio Y, Senécal JS, et al (2003) Quick training of probabilistic neural nets by importance sam-
pling. In: AISTATS

19. Berendsen R, Balog K, Bogers T, van den Bosch A, de Rijke M (2013) On the assessment of expertise
profiles. Journal of the American Society for Information Science and Technology 64(10):2024–
2044

20. Berendsen R, Tsagkias M, Weerkamp W, de Rijke M (2013) Pseudo test collections for training and
tuning microblog rankers. In: SIGIR ’13: 36th International ACM SIGIR Conference on Research
and Development in Information Retrieval, ACM

21. Berger A, Lafferty J (1999) Information retrieval as statistical translation. In: Proceedings of the
22nd annual International ACM SIGIR Conference on Research and Development in Information
Retrieval, ACM, pp 222–229

22. Blei DM, Ng AY, Jordan MI (2003) Latent dirichlet allocation. Journal of machine Learning research
3(Jan):993–1022

23. Bordes A, Chopra S, Weston J (2014) Question answering with subgraph embeddings. In: Proceed-
ings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP),
Association for Computational Linguistics, pp 615–620

24. Borisov A, Markov I, de Rijke M, Serdyukov P (2016) A context-aware time model for web search.
In: SIGIR 2016: 39th International ACM SIGIR Conference on Research and Development in Infor-
mation Retrieval, ACM, pp 205–214

25. Borisov A, Markov I, de Rijke M, Serdyukov P (2016) A neural click model for web search. In:
Proceedings of the 25th International Conference on World Wide Web, International World Wide
Web Conferences Steering Committee, pp 531–541

26. Boytsov L, Novak D, Malkov Y, Nyberg E (2016) Off the beaten path: Let’s replace term-based
retrieval with k-nn search. In: Proceedings of the 25th ACM International on Conference on Infor-
mation and Knowledge Management, ACM, pp 1099–1108

68 Kezban Dilek Onal et al.

27. Broder A, Domingos P, de Freitas N, Guyon I, Malik J, Neville J (2016) Is deep learning the new
42? In: Plenary Panel at the 22nd ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining

28. Bromley J, Bentz JW, Bottou L, Guyon I, LeCun Y, Moore C, Säckinger E, Shah R (1993) Signature
verification using a “siamese” time delay neural network. International Journal of Pattern Recogni-
tion and Artificial Intelligence 7(04):669–688

29. Cai F, de Rijke M (2016) Learning from homologous queries and semantically related terms for
query auto completion. Information Processing & Management 52(4):628–643

30. Cai F, de Rijke M (2016) A survey of query auto completion in information retrieval. Foundations
and Trends in Information Retrieval 10(4):273–363

31. Cai F, Liang S, de Rijke M (2014) Time-sensitive personalized query auto-completion. In: Pro-
ceedings of the 23rd ACM International Conference on Conference on Information and Knowledge
Management, ACM, pp 1599–1608

32. Carmel D, Zwerdling N, Guy I, Ofek-Koifman S, Har’El N, Ronen I, Uziel E, Yogev S, Chernov
S (2009) Personalized social search based on the user’s social network. In: Proceedings of the 18th
ACM Conference on Information and Knowledge Management, ACM, pp 1227–1236

33. Carpineto C, Romano G (2012) A survey of automatic query expansion in information retrieval.
ACM Comput Surv 44(1):1:1–1:50

34. Cartright MA, Allan J, Lavrenko V, McGregor A (2010) Fast query expansion using approximations
of relevance models. In: Proceedings of the 19th ACM International Conference on Information and
Knowledge Management, ACM, pp 1573–1576

35. Charikar MS (2002) Similarity estimation techniques from rounding algorithms. In: Proceedings of
the thiry-fourth annual ACM symposium on Theory of computing, ACM, pp 380–388

36. Chen W, Grangier D, Auli M (2016) Strategies for training large vocabulary neural language models.
In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Vol-
ume 1: Long Papers), Association for Computational Linguistics, Berlin, Germany, pp 1975–1985

37. Chirita PA, Firan CS, Nejdl W (2007) Personalized query expansion for the web. In: Proceedings of
the 30th annual International ACM SIGIR Conference on Research and Development in Information
Retrieval, ACM, pp 7–14

38. Cho K (2015) Natural language understanding with distributed representation. arXiv preprint
arXiv:151107916

39. Cho K, van Merrienboer B, Gülçehre Ç, Bougares F, Schwenk H, Bengio Y (2014) Learning phrase
representations using RNN encoder-decoder for statistical machine translation. CoRR abs/1406.1078

40. Chuklin A, Markov I, de Rijke M (2015) Click Models for Web Search. Synthesis Lectures on
Information Concepts, Retrieval, and Services, Morgan & Claypool Publishers

41. Chung J, Gulcehre C, Cho K, Bengio Y (2014) Empirical evaluation of gated recurrent neural net-
works on sequence modeling. In: NIPS Workshop on Deep Learning

42. Clinchant S, Perronnin F (2013) Aggregating continuous word embeddings for information retrieval.
In: Proceedings of the Workshop on Continuous Vector Space Models and their Compositionality,
pp 100–109

43. Cohen D, Ai Q, Croft WB (2016) Adaptability of neural networks on varying granularity IR tasks.
In: ACM SIGIR Workshop on Neural Information Retrieval (Neu-IR)

44. Collobert R, Weston J (2008) A unified architecture for natural language processing: Deep neural
networks with multitask learning. In: Proceedings of the 25th International Conference on Machine
learning, ACM, pp 160–167

45. Collobert R, Weston J, Bottou L, Karlen M, Kavukcuoglu K, Kuksa P (2011) Natural language
processing (almost) from scratch. Journal of Machine Learning Research 12(Aug):2493–2537

46. Conneau A, Schwenk H, Barrault L, Lecun Y (2016) Very deep convolutional networks for natural
language processing. arXiv preprint arXiv:160601781

47. Croft B, Metzler D, Strohman T (2009) Search Engines: Information Retrieval in Practice. Addison-
Wesley Publishing Company

48. Dai AM, Olah C, Le QV, Corrado GS (2014) Document embedding with paragraph vectors. In: NIPS
Deep Learning Workshop

49. Dang V, Croft BW (2010) Query reformulation using anchor text. In: Proceedings of the third ACM
International Conference on Web Search and Data Mining, ACM, pp 41–50

50. Darragh JJ, Witten IH, James ML (1990) The reactive keyboard: A predictive typing aid. Computer
23(11):41–49

Neural Information Retrieval: At the End of the Early Years 69

51. Datar M, Immorlica N, Indyk P, Mirrokni VS (2004) Locality-sensitive hashing scheme based on p-
stable distributions. In: Proceedings of the twentieth annual symposium on Computational geometry,
ACM, pp 253–262

52. De Vine L, Zuccon G, Koopman B, Sitbon L, Bruza P (2014) Medical semantic similarity with a
neural language model. In: Proceedings of the 23rd ACM International Conference on Conference
on Information and Knowledge Management, ACM, pp 1819–1822

53. Deerwester S, Dumais ST, Furnas GW, Landauer TK, Harshman R (1990) Indexing by latent seman-
tic analysis. Journal of the American society for information science 41(6):391

54. Deng L (2014) A tutorial survey of architectures, algorithms, and applications for deep learning.
APSIPA Transactions on Signal and Information Processing 3:e2

55. Deng L, Yu D (2013) Deep learning: Methods and applications. Foundations and Trends in Signal
Processing 7(3–4):197–387

56. Dhingra B, Zhou Z, Fitzpatrick D, Muehl M, Cohen W (2016) Tweet2vec: Character-based dis-
tributed representations for social media. In: Proceedings of the 54th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 2: Short Papers), Association for Computational
Linguistics, pp 269–274

57. Diaz F, Mitra B, Craswell N (2016) Query expansion with locally-trained word embeddings. In:
54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),
Association for Computational Linguistics, Berlin, Germany, pp 367–377

58. Djuric N, Wu H, Radosavljevic V, Grbovic M, Bhamidipati N (2015) Hierarchical neural language
models for joint representation of streaming documents and their content. In: Proceedings of the 24th
International Conference on World Wide Web, ACM, New York, NY, USA, WWW ’15, pp 248–255

59. Dumais S, Banko M, Brill E, Lin J, Ng A (2002) Web question answering: Is more always better? In:
Proceedings of the 25th annual International ACM SIGIR Conference on Research and Development
in Information Retrieval, ACM, pp 291–298

60. Dyer C (2014) Notes on noise contrastive estimation and negative sampling. CoRR abs/1410.8251
61. Elman JL (1990) Finding structure in time. Cognitive science 14(2):179–211
62. Erhan D, Bengio Y, Courville A, Manzagol PA, Vincent P, Bengio S (2010) Why does unsupervised

pre-training help deep learning? Journal of Machine Learning Research 11(Feb):625–660
63. Faruqui M, Dodge J, Jauhar SK, Dyer C, Hovy E, Smith NA (2014) Retrofitting word vectors to

semantic lexicons. arXiv preprint arXiv:14114166
64. Friedman JH (2001) Greedy function approximation: a gradient boosting machine. Annals of Statis-

tics pp 1189–1232
65. Ganguly D, Roy D, Mitra M, Jones GJ (2015) Word embedding based generalized language model

for information retrieval. In: Proceedings of the 38th International ACM SIGIR Conference on Re-
search and Development in Information Retrieval, ACM, pp 795–798

66. Ganguly D, Roy D, Mitra M, Jones G (2016) Representing documents and queries as sets of word
embedded vectors for information retrieval. In: ACM SIGIR Workshop on Neural Information Re-
trieval (Neu-IR)

67. Gao J (2015) Deep learning for web search and natural language processing
68. Gao J, He X, Nie JY (2010) Clickthrough-based translation models for web search: from word

models to phrase models. In: Proceedings of the 19th ACM International Conference on Information
and Knowledge Management (CIKM), ACM, pp 1139–1148

69. Gao J, Pantel P, Gamon M, He X, Deng L (2014) Modeling interestingness with deep neural net-
works. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Process-
ing (EMNLP), Association for Computational Linguistics, Doha, Qatar, pp 2–13

70. Goldberg Y (2016) A primer on neural network models for natural language processing. Journal of
Artificial Intelligence Research 57:345–420

71. Goodfellow I, Bengio Y, Courville A (2016) Deep Learning. MIT Press
72. Graves A (2012) Neural networks. In: Supervised Sequence Labelling with Recurrent Neural Net-

works, Springer, pp 15–35
73. Graves A (2013) Generating sequences with recurrent neural networks. arXiv preprint

arXiv:13080850
74. Graves A, Wayne G, Danihelka I (2014) Neural turing machines. arXiv preprint arXiv:14105401
75. Grbovic M, Djuric N, Radosavljevic V, Bhamidipati N (2015) Search retargeting using directed

query embeddings. In: Proceedings of the 24th International Conference on World Wide Web, ACM,
New York, NY, USA, WWW ’15 Companion, pp 37–38

70 Kezban Dilek Onal et al.

76. Grbovic M, Djuric N, Radosavljevic V, Silvestri F, Bhamidipati N (2015) Context-and content-aware
embeddings for query rewriting in sponsored search. In: Proceedings of the 38th International ACM
SIGIR Conference on Research and Development in Information Retrieval, ACM, pp 383–392

77. Greff K, Srivastava RK, Koutnı́k J, Steunebrink BR, Schmidhuber J (2015) Lstm: A search space
odyssey. arXiv preprint arXiv:150304069

78. Guo J, Fan Y, Ai Q, Croft WB (2016) A deep relevance matching model for ad-hoc retrieval. In:
The 25th ACM International Conference on Information and Knowledge Management, Indianapolis,
United States

79. Guo J, Fan Y, Ai Q, Croft WB (2016) A deep relevance matching model for ad-hoc retrieval. In:
CIKM 2016: 25th ACM Conference on Information and Knowledge Management, ACM

80. Gupta P, Bali K, Banchs RE, Choudhury M, Rosso P (2014) Query expansion for mixed-script
information retrieval. In: Proceedings of the 37th International ACM SIGIR Conference on Research
& development in information retrieval, ACM, pp 677–686

81. Gutmann MU, Hyvärinen A (2012) Noise-contrastive estimation of unnormalized statistical models,
with applications to natural image statistics. J Mach Learn Res 13(1):307–361

82. Harman D, Buckley C (2009) Overview of the reliable information access workshop. Information
Retrieval 12(6):615–641

83. Harris ZS (1954) Distributional structure. Word 10(2-3):146–162
84. Hill F, Cho K, Korhonen A (2016) Learning distributed representations of sentences from unlabelled

data. In: Proceedings of the 2016 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Association for Computational Lin-
guistics, San Diego, California, pp 1367–1377

85. Hinton G, Deng L, Yu D, Dahl GE, Mohamed Ar, Jaitly N, Senior A, Vanhoucke V, Nguyen P,
Sainath TN, others (2012) Deep neural networks for acoustic modeling in speech recognition: The
shared views of four research groups. IEEE Signal Processing Magazine 29(6):82–97

86. Hinton GE, Salakhutdinov RR (2006) Reducing the dimensionality of data with neural networks.
Science 313(5786):504–507

87. Hochreiter S, Schmidhuber J (1997) Long short-term memory. Neural Computation 9(8):1735–1780
88. Hu B, Lu Z, Li H, Chen Q (2014) Convolutional neural network architectures for matching natural

language sentences. In: Advances in Neural Information Processing Systems, pp 2042–2050
89. Huang PS, He X, Gao J, Deng L, Acero A, Heck L (2013) Learning deep structured semantic models

for web search using clickthrough data. In: Proceedings of the 22nd ACM International Conference
on Information & Knowledge management, ACM, pp 2333–2338

90. Jaakkola TS, Haussler D, et al (1999) Exploiting generative models in discriminative classifiers.
Advances in Neural Information Processing Systems pp 487–493

91. Jiang JY, Ke YY, Chien PY, Cheng PJ (2014) Learning user reformulation behavior for query auto-
completion. In: Proceedings of the 37th International ACM SIGIR Conference on Research & De-
velopment in Information Retrieval, ACM, pp 445–454

92. Jurgovsky J, Granitzer M, Seifert C (2016) Evaluating memory efficiency and robustness of word
embeddings. In: European Conference on Information Retrieval, Springer, pp 200–211

93. Kalchbrenner N, Grefenstette E, Blunsom P (2014) A convolutional neural network for modelling
sentences. arXiv preprint arXiv:14042188

94. Kanhabua N, Ren H, Moeslund TB (2016) Learning dynamic classes of events using stacked multi-
layer perceptron networks. In: ACM SIGIR Workshop on Neural Information Retrieval (Neu-IR)

95. Kenter T, de Rijke M (2015) Short text similarity with word embeddings. In: Proceedings of the
24th ACM International on Conference on Information and Knowledge Management, ACM, pp
1411–1420

96. Kim S, Wilbur WJ, Lu Z (2016) Bridging the gap: a semantic similarity measure between queries
and documents. arXiv preprint arXiv:160801972

97. Kim Y (2014) Convolutional neural networks for sentence classification. arXiv preprint
arXiv:14085882

98. Kiros R, Zhu Y, Salakhutdinov RR, Zemel R, Urtasun R, Torralba A, Fidler S (2015) Skip-thought
vectors. In: Advances in Neural Information Processing Systems, pp 3294–3302

99. Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural
networks. In: Advances in Neural Information Processing Systems, pp 1097–1105

100. Kumar A, Irsoy O, Su J, Bradbury J, English R, Pierce B, Ondruska P, Gulrajani I, Socher R
(2015) Ask me anything: Dynamic memory networks for natural language processing. arXiv preprint
arXiv:150607285

Neural Information Retrieval: At the End of the Early Years 71

101. Kusner MJ, Sun Y, Kolkin NI, Weinberger KQ (2015) From word embeddings to document dis-
tances. In: Proceedings of the 32nd International Conference on Machine Learning (ICML 2015),
pp 957–966

102. Lavrenko V, Croft WB (2001) Relevance based language models. In: Proceedings of the 24th An-
nual International ACM SIGIR Conference on Research and Development in Information Retrieval,
ACM, New York, NY, USA, SIGIR ’01, pp 120–127

103. Le QV, Mikolov T (2014) Distributed representations of sentences and documents. In: ICML, vol 14,
pp 1188–1196

104. LeCun Y, Bengio Y (1995) Convolutional networks for images, speech, and time series. The hand-
book of brain theory and neural networks 3361(10):1995

105. LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553):436–444
106. Lee CJ, Ai Q, Croft WB, Sheldon D (2015) An optimization framework for merging multiple result

lists. In: Proceedings of the 24th ACM International on Conference on Information and Knowledge
Management, ACM, pp 303–312

107. Lei T, Joshi H, Barzilay R, Jaakkola TS, Tymoshenko K, Moschitti A, Màrquez L (2016) Semi-
supervised question retrieval with gated convolutions. In: NAACL HLT 2016, The 2016 Conference
of the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, San Diego California, USA, June 12-17, 2016, pp 1279–1289

108. Levy O, Goldberg Y, Dagan I (2015) Improving distributional similarity with lessons learned from
word embeddings. Transactions of the Association for Computational Linguistics 3:211–225

109. Li H (2016) Does IR need deep learning?
110. Li H (2016) Opportunities and challenges in deep learning for information retrieval
111. Li H, Lu Z (2016) Deep Learning for Information Retrieval. In: SIGIR, Pisa, Italy, vol Tutorial at the

39th International ACM SIGIR Conference on Research and Development in Information Retrieval,
pp 1203–1206

112. Li H, Xu J (2013) Semantic matching in search. Foundations and Trends in Information Retrieval
7(5):343–469

113. Li J, Luong MT, Jurafsky D, Hovy E (2015) When are tree structures necessary for deep learning of
representations? arXiv preprint arXiv:150300185

114. Li X, Guo C, Chu W, Wang YY, Shavlik J (2014) Deep learning powered in-session contextual
ranking using clickthrough data. In: In Proc. of NIPS

115. Liao H, Peng L, Liu Z, Shen X (2014) ipinyou global rtb bidding algorithm competition dataset. In:
Proceedings of the Eighth International Workshop on Data Mining for Online Advertising, ACM, pp
1–6

116. Lioma C, Larsen B, Petersen C, Simonsen JG (2016) Deep learning relevance: Creating relevant
information (as opposed to retrieving it). In: ACM SIGIR Workshop on Neural Information Retrieval
(Neu-IR)

117. Liu TY (2009) Learning to rank for information retrieval. Foundations and Trends in Information
Retrieval 3(3):225–331

118. Liu W, Wang J, Ji R, Jiang YG, Chang SF (2012) Supervised hashing with kernels. In: Computer
Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on, IEEE, pp 2074–2081

119. Liu X, Croft WB (2004) Cluster-based retrieval using language models. In: Proceedings of the 27th
annual International ACM SIGIR Conference on Research and Development in Information Re-
trieval, ACM, pp 186–193

120. Liu X, Gao J, He X, Deng L, Duh K, Wang YY (2015) Representation learning using multi-task
deep neural networks for semantic classification and information retrieval. In: Proceedings of the
2015 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, Association for Computational Linguistics, Denver, Colorado, pp
912–921

121. Lu Z, Li H (2013) A deep architecture for matching short texts. In: Advances in Neural Information
Processing Systems, pp 1367–1375

122. Lund K, Burgess C (1996) Producing high-dimensional semantic spaces from lexical co-occurrence.
Behavior Research Methods, Instruments, & Computers 28(2):203–208

123. Luukkonen P, Koskela M, Floreen P (2016) LSTM-based predictions for proactive information re-
trieval. In: ACM SIGIR Workshop on Neural Information Retrieval (Neu-IR)

124. Ma L, Lu Z, Li H (2015) Learning to answer questions from image using convolutional neural
network. arXiv preprint arXiv:150600333

72 Kezban Dilek Onal et al.

125. Ma L, Lu Z, Shang L, Li H (2015) Multimodal convolutional neural networks for matching image
and sentence. In: Proceedings of the IEEE International Conference on Computer Vision, pp 2623–
2631

126. Ma L, Lu Z, Li H (2016) Learning to answer questions from image using convolutional neural
network. In: AAAI Conference on Artificial Intelligence, pp 3567–3573

127. van der Maaten L, Hinton G (2008) Visualizing data using t-SNE. Journal of Machine Learning
Research 9(Nov):2579–2605

128. Manning C (2016) Natural Language Inference, Reading Comprehension and Deep Learning
129. Manning CD, Raghavan P, Schütze H (2008) Introduction to Information Retrieval. Cambridge Uni-

versity Press
130. Manotumruksa J, Macdonald C, Ounis I (2016) Modelling user preferences using word embeddings

for context-aware venue recommendation. In: ACM SIGIR Workshop on Neural Information Re-
trieval (Neu-IR)

131. McAuley J, Pandey R, Leskovec J (2015) Inferring networks of substitutable and complementary
products. In: KDD, ACM, pp 785–794

132. McClelland JL, Rumelhart DE, PDP Research Group, et al (1986) Parallel distributed processing.
Explorations in the microstructure of cognition 2:216–271

133. Mesnil G, He X, Deng L, Bengio Y (2013) Investigation of recurrent-neural-network architectures
and learning methods for spoken language understanding. In: INTERSPEECH, pp 3771–3775

134. Mesnil G, Mikolov T, Ranzato M, Bengio Y (2014) Ensemble of generative and discriminative
techniques for sentiment analysis of movie reviews. In: International Conference on Learning Rep-
resentations (ICLR)

135. Metz C (2016) AI is transforming google search. the rest of the web is next. WIRED Magazine
136. Mikolov T, Dean J (2013) Distributed representations of words and phrases and their composition-

ality. Advances in Neural Information Processing Systems
137. Mikolov T, Karafiát M, Burget L, Cernockỳ J, Khudanpur S (2010) Recurrent neural network based

language model. In: INTERSPEECH, pp 1045–1048
138. Mikolov T, Chen K, Corrado G, Dean J (2013) Efficient estimation of word representations in vector

space. CoRR abs/1301.3781
139. Mikolov T, Chen K, Corrado G, Dean J (2013) Efficient estimation of word representations in vector

space. arXiv preprint arXiv:13013781
140. Mikolov T, Sutskever I, Chen K, Corrado GS, Dean J (2013) Distributed representations of words and

phrases and their compositionality. In: Burges CJC, Bottou L, Welling M, Ghahramani Z, Weinberger
KQ (eds) Advances in Neural Information Processing Systems 26, Curran Associates, Inc., pp 3111–
3119

141. Mikolov T, Yih Wt, Zweig G (2013) Linguistic regularities in continuous space word representations.
In: Proceedings of the 2013 Conference of the North American Chapter of the Association for Com-
putational Linguistics: Human Language Technologies, Association for Computational Linguistics,
Atlanta, Georgia, pp 746–751

142. Mitchell J, Lapata M (2010) Composition in distributional models of semantics. Cognitive Science
34(8):1388–1429, DOI 10.1111/j.1551-6709.2010.01106.x

143. Mitra B (2015) Exploring session context using distributed representations of queries and reformu-
lations. In: Proceedings of the 38th International ACM SIGIR Conference on Research and Devel-
opment in Information Retrieval, ACM, pp 3–12

144. Mitra B, Craswell N (2015) Query auto-completion for rare prefixes. In: Proceedings of the 24th
ACM International on Conference on Information and Knowledge Management, ACM, pp 1755–
1758

145. Mitra B, Nalisnick E, Craswell N, Caruana R (2016) A dual embedding space model for document
ranking. arXiv preprint arXiv:160201137

146. Mnih A, Teh YW (2012) A fast and simple algorithm for training neural probabilistic language
models. arXiv preprint arXiv:12066426

147. Morin F, Bengio Y (2005) Hierarchical probabilistic neural network language model. In: Proceed-
ings of the Tenth International Workshop on Artificial Intelligence and Statistics, AISTATS 2005,
Bridgetown, Barbados, January 6-8, 2005

148. Moshfeghi Y, Triantafillou P, Pollick FE (2016) Understanding information need: An fMRI study.
In: Proceedings of the 39th International ACM SIGIR Conference on Research and Development in
Information Retrieval, ACM, New York, NY, USA, SIGIR ’16, pp 335–344

Neural Information Retrieval: At the End of the Early Years 73

149. Nair V, Hinton GE (2010) Rectified linear units improve restricted boltzmann machines. In: Pro-
ceedings of the 27th International Conference on Machine Learning (ICML-10), pp 807–814

150. Nalisnick E, Mitra B, Craswell N, Caruana R (2016) Improving document ranking with dual word
embeddings. In: 25th World Wide Web (WWW) Conference Companion Volume, International
World Wide Web Conferences Steering Committee, pp 83–84

151. Neelakantan A, Shankar J, Passos A, McCallum A (2014) Efficient non-parametric estimation of
multiple embeddings per word in vector space. In: Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing (EMNLP), pp 1059–1069

152. Nguyen GH, Tamine L, Soulier L, Bricon-Souf N (2016) Toward a deep neural approach for
knowledge-based IR. In: ACM SIGIR Workshop on Neural Information Retrieval (Neu-IR)

153. Onal KD, Altingovde IS, Karagoz P (2015) Utilizing Word Embeddings for Result Diversifi-
cation in Tweet Search, Springer International Publishing, Cham, pp 366–378. DOI 10.1007/
978-3-319-28940-3 29

154. Ordentlich E, Yang L, Feng A, Cnudde P, Grbovic M, Djuric N, Radosavljevic V, Owens G (2016)
Network-Efficient Distributed Word2vec Training System for Large Vocabularies. In: The 25th ACM
International Conference on Information and Knowledge Management, Indianapolis, United States

155. Palakodety S, Callan J (2014) Query transformations for result merging. In: Proceedings of The
Twenty-Third Text REtrieval Conference, TREC 2014, Gaithersburg, Maryland, USA, November
19-21, 2014

156. Palangi H, Deng L, Shen Y, Gao J, He X, Chen J, Song X, Ward R (2014) Semantic modelling with
long-short-term memory for information retrieval. CoRR abs/1412.6629

157. Palangi H, Deng L, Shen Y, Gao J, He X, Chen J, Song X, Ward R (2016) Deep sentence em-
bedding using long short-term memory networks: Analysis and application to information retrieval.
IEEE/ACM Transactions on Audio, Speech, and Language Processing 24(4):694–707

158. Pang L, Lan Y, Guo J, Xu J, Cheng X (2016) A study of matchpyramid models on ad-hoc retrieval.
In: ACM SIGIR Workshop on Neural Information Retrieval (Neu-IR)

159. Pang L, Lan Y, Guo J, Xu J, Wan S, Cheng X (2016) Text matching as image recognition. In: 30th
AAAI Conference on Artificial Intelligence, pp 2793–2799

160. Pascanu R, Mikolov T, Bengio Y (2013) On the difficulty of training recurrent neural networks.
ICML (3) 28:1310–1318

161. Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In:
EMNLP, vol 14, pp 1532–43

162. Ponte JM, Croft WB (1998) A language modeling approach to information retrieval. In: Proceedings
of the 21st annual International ACM SIGIR Conference on Research and Development in Informa-
tion Retrieval, ACM, pp 275–281

163. Radlinski F, Joachims T (2005) Query chains: Learning to rank from implicit feedback. In: Pro-
ceedings of the Eleventh ACM SIGKDD International Conference on Knowledge Discovery in Data
Mining, ACM, New York, NY, USA, KDD ’05, pp 239–248

164. Rekabsaz N, Lupu M, Hanbury A (2016) Uncertainty in neural network word embedding exploration
of potential threshold. In: ACM SIGIR Workshop on Neural Information Retrieval (Neu-IR)

165. Rekabsaz N, Lupu M, Hanbury A, Zuccon G (2016) Generalizing translation models in the proba-
bilistic relevance framework. CIKM’16

166. Robertson S (2004) Understanding inverse document frequency: on theoretical arguments for idf.
Journal of documentation 60(5):503–520

167. Rocchio JJ (1971) Relevance feedback in information retrieval. The Smart Retrieval System-
Experiments in Automatic Document Processing pp 313–323

168. Roy D, Ganguly D, Mitra M, Jones GJ (2016) Word vector compositionality based relevance feed-
back using kernel density estimation. In: Proceedings of the 25th ACM International on Conference
on Information and Knowledge Management, ACM, New York, NY, USA, CIKM ’16, pp 1281–1290

169. Roy D, Paul D, Mitra M (2016) Using word embeddings for automatic query expansion. In: ACM
SIGIR Workshop on Neural Information Retrieval (Neu-IR)

170. Rumelhart DE, Hinton GE, Williams RJ (1988) Learning representations by back-propagating errors.
Cognitive modeling 5(3):1

171. Salakhutdinov R, Hinton G (2009) Semantic hashing. International Journal of Approximate Reason-
ing 50(7):969–978

172. Schmidhuber J (2015) Deep learning in neural networks: An overview. Neural Networks 61:85–117,
DOI 10.1016/j.neunet.2014.09.003

74 Kezban Dilek Onal et al.

173. Sennrich R, Haddow B, Birch A (2016) Neural machine translation of rare words with subword
units. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), Association for Computational Linguistics, Berlin, Germany, pp 1715–
1725

174. Severyn A, Moschitti A (2015) Learning to rank short text pairs with convolutional deep neural
networks. In: Proceedings of the 38th International ACM SIGIR Conference on Research and De-
velopment in Information Retrieval, ACM, pp 373–382

175. Shen Y, He X, Gao J, Deng L, Mesnil G (2014) A latent semantic model with convolutional-pooling
structure for information retrieval. In: Proceedings of the 23rd ACM International Conference on
Conference on Information and Knowledge Management, ACM, pp 101–110

176. Shen Y, He X, Gao J, Deng L, Mesnil G (2014) Learning semantic representations using convo-
lutional neural networks for web search. In: Proceedings of the 23rd International Conference on
World Wide Web, ACM, pp 373–374

177. Shokouhi M, Radinsky K (2012) Time-sensitive query auto-completion. In: Proceedings of the
35th International ACM SIGIR Conference on Research and Development in Information Retrieval,
ACM, pp 601–610

178. Smolensky P (1986) Information processing in dynamical systems: Foundations of harmony theory.
Tech. rep., DTIC Document

179. Socher R, Chen D, Manning CD, Ng A (2013) Reasoning with neural tensor networks for knowledge
base completion. In: Advances in Neural Information Processing Systems, pp 926–934

180. Song Y, Elkahky AM, He X (2016) Multi-rate deep learning for temporal recommendation. In: Pro-
ceedings of the 39th International ACM SIGIR Conference on Research and Development in Infor-
mation Retrieval, ACM, New York, NY, USA, SIGIR ’16, pp 909–912

181. Sordoni A, Bengio Y, Nie JY (2014) Learning concept embeddings for query expansion by quantum
entropy minimization. In: AAAI, pp 1586–1592

182. Sordoni A, Bengio Y, Vahabi H, Lioma C, Grue Simonsen J, Nie JY (2015) A hierarchical recurrent
encoder-decoder for generative context-aware query suggestion. In: Proceedings of the 24th ACM
International on Conference on Information and Knowledge Management (CIKM), ACM, pp 553–
562

183. Suggu SP, Goutham KN, Chinnakotla MK, Shrivastava M (2016) Deep feature fusion network for
answer quality prediction in community question answering. In: ACM SIGIR Workshop on Neural
Information Retrieval (Neu-IR)

184. Sutskever I, Vinyals O, Le QV (2014) Sequence to sequence learning with neural networks. In:
Advances in Neural Information Processing Systems, pp 3104–3112

185. Tai KS, Socher R, Manning CD (2015) Improved semantic representations from tree-structured long
short-term memory networks. In: Proceedings of the 53rd Annual Meeting of the Association for
Computational Linguistics and the 7th International Joint Conference on Natural Language Pro-
cessing (Volume 1: Long Papers), Association for Computational Linguistics, Beijing, China, pp
1556–1566

186. Turney PD, Pantel P (2010) From frequency to meaning: Vector space models of semantics. J Artif
Intell Res (JAIR) 37:141–188, DOI 10.1613/jair.2934

187. Van Gysel C, de Rijke M, Kanoulas E (2016) Learning latent vector spaces for product search. In:
CIKM 2016: 25th ACM Conference on Information and Knowledge Management, ACM

188. Van Gysel C, de Rijke M, Worring M (2016) Unsupervised, efficient and semantic expertise retrieval.
In: Proceedings of the 25th International Conference on World Wide Web, International World Wide
Web Conferences Steering Committee, Republic and Canton of Geneva, Switzerland, WWW ’16,
pp 1069–1079, DOI 10.1145/2872427.2882974

189. Vulic I, Moens MF (2015) Monolingual and cross-lingual information retrieval models based on
(bilingual) word embeddings. In: Proceedings of the 38th International ACM SIGIR Conference on
Research and Development in Information Retrieval, ACM, pp 363–372

190. Wan J, Wang D, Hoi SCH, Wu P, Zhu J, Zhang Y, Li J (2014) Deep learning for content-based image
retrieval: A comprehensive study. In: Proceedings of the 22nd ACM International Conference on
Multimedia, ACM, pp 157–166

191. Wang D, Nyberg E (2015) A long short-term memory model for answer sentence selection in ques-
tion answering. ACL, July

192. Wang M, Smith NA, Mitamura T (2007) What is the jeopardy model? a quasi-synchronous grammar
for qa. In: EMNLP-CoNLL, vol 7, pp 22–32

Neural Information Retrieval: At the End of the Early Years 75

193. Wei X, Croft WB (2006) Lda-based document models for ad-hoc retrieval. In: Proceedings of the
29th annual International ACM SIGIR Conference on Research and Development in Information
Retrieval, ACM, pp 178–185

194. Weiss Y, Torralba A, Fergus R (2009) Spectral hashing. In: Advances in Neural Information Pro-
cessing Systems, pp 1753–1760

195. Weston J, Bengio S, Usunier N (2010) Large scale image annotation: learning to rank with joint
word-image embeddings. Machine learning 81(1):21–35

196. Weston J, Chopra S, Bordes A (2014) Memory networks. In: International Conference on Learning
Representations (ICLR)

197. Wu Q, Burges CJ, Svore KM, Gao J (2010) Adapting boosting for information retrieval measures.
Information Retrieval 13(3):254–270

198. Wu Y, Schuster M, Chen Z, Le QV, Norouzi M, Macherey W, Krikun M, Cao Y, Gao Q, Macherey
K, et al (2016) Google’s neural machine translation system: Bridging the gap between human and
machine translation. arXiv preprint arXiv:160908144

199. Xia L, Xu J, Lan Y, Guo J, Cheng X (2015) Learning maximal marginal relevance model via directly
optimizing diversity evaluation measures. In: Proceedings of the 38th International ACM SIGIR
Conference on Research and Development in Information Retrieval, ACM, pp 113–122

200. Xia L, Xu J, Lan Y, Guo J, Cheng X (2016) Modeling document novelty with neural tensor network
for search result diversification. In: Proceedings of the 39th International ACM SIGIR Conference
on Research and Development in Information Retrieval, Pisa, Italy, pp 395–404

201. Xu C, Bai Y, Bian J, Gao B, Wang G, Liu X, Liu TY (2014) Rc-net: A general framework for
incorporating knowledge into word representations. In: Proceedings of the 23rd ACM International
Conference on Conference on Information and Knowledge Management, ACM, pp 1219–1228

202. Xu K, Ba J, Kiros R, Cho K, Courville AC, Salakhutdinov R, Zemel RS, Bengio Y (2015) Show,
attend and tell: Neural image caption generation with visual attention. CoRR abs/1502.03044

203. Yan R, Song Y, Wu H (2016) Learning to respond with deep neural networks for retrieval-based
human-computer conversation system. In: Proceedings of the 39th International ACM SIGIR Con-
ference on Research and Development in Information Retrieval, ACM, pp 55–64

204. Yang J, Stones R, Wang G, Liu X (2016) Selective term proximity scoring via BP-ANN. In: ACM
SIGIR Workshop on Neural Information Retrieval (Neu-IR)

205. Yang L, Ai Q, Guo J, Croft WB (2016) aNMM: Ranking short answer texts with attention-based
neural matching model. In: The 25th ACM International Conference on Information and Knowledge
Management, Indianapolis, United States

206. Yang X, Macdonald C, Ounis I (2016) Using Word Embeddings in Twitter Election Classification.
In: ACM SIGIR Workshop on Neural Information Retrieval (Neu-IR)

207. Ye X, Qi Z, Massey D (2015) Learning relevance from click data via neural network based similarity
models. In: Big Data (Big Data), 2015 IEEE International Conference on, IEEE, pp 801–806

208. Ye X, Shen H, Ma X, Bunescu R, Liu C (2016) From word embeddings to document similarities
for improved information retrieval in software engineering. In: Proceedings of the 38th International
Conference on Software Engineering, ACM, pp 404–415

209. Yi X, Allan J (2009) A comparative study of utilizing topic models for information retrieval. In:
European Conference on Information Retrieval, Springer, pp 29–41

210. Yu D, Deng L (2011) Deep learning and its applications to signal and information processing. IEEE
Signal Processing Magazine 28(1):145–154

211. Yu L, Hermann KM, Blunsom P, Pulman S (2014) Deep learning for answer sentence selection.
arXiv preprint arXiv:14121632

212. Zamani H, Croft WB (2016) Embedding-based query language models. In: Proceedings of the 2016
ACM International Conference on the Theory of Information Retrieval, pp 147–156

213. Zamani H, Croft WB (2016) Estimating embedding vectors for queries. In: Proceedings of the 2016
ACM on International Conference on the Theory of Information Retrieval, ACM, pp 123–132

214. Zhai S, Chang Kh, Zhang R, Zhang Z (2016) Attention based recurrent neural networks for online
advertising. In: Proceedings of the 25th International Conference Companion on World Wide Web,
International World Wide Web Conferences Steering Committee, Republic and Canton of Geneva,
Switzerland, WWW ’16 Companion, pp 141–142

215. Zhai S, Chang Kh, Zhang R, Zhang ZM (2016) Deepintent: Learning attentions for online advertising
with recurrent neural networks. In: Proceedings of the 22nd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, ACM, New York, NY, USA, KDD ’16, pp 1295–1304

76 Kezban Dilek Onal et al.

216. Zhang Q, Kang J, Qian J, Huang X (2014) Continuous word embeddings for detecting local text
reuses at the semantic level. In: Proceedings of the 37th international ACM SIGIR Conference on
Research & development in information retrieval, ACM, pp 797–806

217. Zhang W, Du T, Wang J (2016) Deep learning over multi-field categorical data. In: European Con-
ference on Information Retrieval, Springer, pp 45–57

218. Zhang X, Zhao J, LeCun Y (2015) Character-level convolutional networks for text classification. In:
Advances in Neural Information Processing Systems, pp 649–657

219. Zhang Y, Wallace B (2015) A sensitivity analysis of (and practitioners’ guide to) convolutional neural
networks for sentence classification. arXiv preprint arXiv:151003820

220. Zhang Y, Roller S, Wallace BC (2016) MGNC-CNN: A simple approach to exploiting multiple word
embeddings for sentence classification. In: Proceedings of the 2016 Conference of the North Amer-
ican Chapter of the Association for Computational Linguistics: Human Language Technologies,
Association for Computational Linguistics, San Diego, California, pp 1522–1527

221. Zhang Y, Lease M, Wallace BC (2017) Exploiting domain knowledge via grouped weight sharing
with application to text categorization. arXiv preprint arXiv:170202535

222. Zheng G, Callan J (2015) Learning to reweight terms with distributed representations. In: Proceed-
ings of the 38th International ACM SIGIR Conference on Research and Development in Information
Retrieval, ACM, New York, NY, USA, SIGIR ’15, pp 575–584

223. Zhou G, He T, Zhao J, Hu P (2015) Learning continuous word embedding with metadata for question
retrieval in community question answering. In: Proceedings of ACL, pp 250–259

224. Zhu Y, Lan Y, Guo J, Cheng X, Niu S (2014) Learning for search result diversification. In: Proceed-
ings of the 37th International ACM SIGIR Conference on Research & Development in Information
Retrieval, ACM, pp 293–302

225. Zuccon G, Koopman B, Bruza P, Azzopardi L (2015) Integrating and evaluating neural word em-
beddings in information retrieval. In: Proceedings of the 20th Australasian Document Computing
Symposium, ACM, p 12

